\[ y'(x)=\frac {y(x) \left (x^4 \log ^2(y(x))+2 x^4 \log (x) \log (y(x))+x^4 \log ^2(x)+x \log (y(x))+\log (y(x))-x+x \log (x)+\log (x)-1\right )}{x (x+1)} \] ✓ Mathematica : cpu = 0.251155 (sec), leaf count = 43
\[\left \{\left \{y(x)\to \frac {\exp \left (\frac {12 x}{-3 x^4+4 x^3-6 x^2+12 x-12 \log (x+1)+c_1}\right )}{x}\right \}\right \}\] ✓ Maple : cpu = 0.318 (sec), leaf count = 73
\[\left \{y \left (x \right ) = {\mathrm e}^{\frac {-12 \ln \left (x \right ) \ln \left (x +1\right )-12 x +\left (-3 x^{4}+4 x^{3}-6 x^{2}+12 x +12 c_{1}\right ) \ln \left (x \right )}{3 x^{4}-4 x^{3}+6 x^{2}-12 c_{1}-12 x +12 \ln \left (x +1\right )}}\right \}\]