\[ y'(x)=\frac {y(x) \left (x \log ^2(y(x))+2 x \log (x) \log (y(x))+x \log (y(x))+\log (y(x))-x+x \log ^2(x)+x \log (x)+\log (x)-1\right )}{x (x+1)} \] ✓ Mathematica : cpu = 0.250359 (sec), leaf count = 28
\[\left \{\left \{y(x)\to \frac {e^{-\frac {x}{x-\log (x+1)-c_1}}}{x}\right \}\right \}\] ✓ Maple : cpu = 0.218 (sec), leaf count = 38
\[\left \{y \left (x \right ) = {\mathrm e}^{\frac {\ln \left (x \right ) \ln \left (x +1\right )-x +\left (c_{1}-x \right ) \ln \left (x \right )}{-c_{1}+x -\ln \left (x +1\right )}}\right \}\]