\[ y'(x)=\frac {x^6+6 x^5-12 x^4 y(x)+12 x^4-48 x^3 y(x)+16 x^3+48 x^2 y(x)^2-48 x^2 y(x)+16 x^2+96 x y(x)^2-32 x y(x)-64 y(x)^3-32 x}{16 x^2-64 y(x)+32 x-64} \] ✓ Mathematica : cpu = 0.593567 (sec), leaf count = 136
\[\text {Solve}\left [\frac {2}{5} \text {RootSum}\left [\text {$\#$1}^4+4 \text {$\#$1}^3-8 \text {$\#$1}^2 y(x)-16 \text {$\#$1} y(x)-8 \text {$\#$1}+16 y(x)^2+16 y(x)+8\& ,\frac {\text {$\#$1}^2 (-\log (x-\text {$\#$1}))+4 y(x) \log (x-\text {$\#$1})-2 \text {$\#$1} \log (x-\text {$\#$1})+3 \log (x-\text {$\#$1})}{-\text {$\#$1}^2-2 \text {$\#$1}+4 y(x)+2}\& \right ]-\frac {4}{5} \log \left (x^2-4 y(x)+2 x+4\right )+x=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.085 (sec), leaf count = 70
\[\left \{-c_{1}+x -\frac {2 \arctan \left (\frac {x^{2}}{2}+x -2 y \left (x \right )-1\right )}{5}-\frac {4 \ln \left (-\frac {x^{2}}{4}-\frac {x}{2}+y \left (x \right )-1\right )}{5}+\frac {2 \ln \left (-\frac {x^{2}}{2}-x +2 y \left (x \right )+2 \left (-\frac {x^{2}}{4}-\frac {x}{2}+y \left (x \right )\right )^{2}+1\right )}{5} = 0\right \}\]