\[ y'(x)=\frac {x^3 \log ^3(x)-3 x^2 y(x) \log ^2(x)-x^2+x^2 \log (x)-y(x)^3-y(x)^2-2 x y(x)+3 x y(x)^2 \log (x)+x y(x) \log (x)}{x (-y(x)-x+x \log (x))} \] ✓ Mathematica : cpu = 0.283742 (sec), leaf count = 80
\[\left \{\left \{y(x)\to -\frac {1}{x \left (-\frac {1}{x^2}-\frac {1}{x^2 \sqrt {-2 x+c_1}}\right )}-x+x \log (x)\right \},\left \{y(x)\to -\frac {1}{x \left (-\frac {1}{x^2}+\frac {1}{x^2 \sqrt {-2 x+c_1}}\right )}-x+x \log (x)\right \}\right \}\] ✓ Maple : cpu = 0.069 (sec), leaf count = 63
\[\left \{y \left (x \right ) = \frac {\left (\sqrt {c_{1}-2 x}\, \ln \left (x \right )-\ln \left (x \right )+1\right ) x}{\sqrt {c_{1}-2 x}-1}, y \left (x \right ) = \frac {\left (\sqrt {c_{1}-2 x}\, \ln \left (x \right )+\ln \left (x \right )-1\right ) x}{\sqrt {c_{1}-2 x}+1}\right \}\]