\[ y'(x)=\frac {8 a^3 x^3+12 a^2 x^4+48 a^2 x^2 y(x)+6 a x^5+48 a x^3 y(x)-16 a x^2+96 a x y(x)^2+x^6+12 x^4 y(x)-8 x^3+48 x^2 y(x)^2-32 x y(x)+64 y(x)^3-32 x}{32 a x+16 x^2+64 y(x)+64} \] ✓ Mathematica : cpu = 1.45908 (sec), leaf count = 213
\[\text {Solve}\left [x-4 \text {RootSum}\left [\text {$\#$1}^6+6 \text {$\#$1}^5 a+12 \text {$\#$1}^4 a^2+12 \text {$\#$1}^4 y(x)+8 \text {$\#$1}^3 a^3+48 \text {$\#$1}^3 a y(x)+48 \text {$\#$1}^2 a^2 y(x)+8 \text {$\#$1}^2 a+48 \text {$\#$1}^2 y(x)^2+16 \text {$\#$1} a^2+96 \text {$\#$1} a y(x)^2+32 a y(x)+32 a+64 y(x)^3\& ,\frac {\text {$\#$1}^2 \log (x-\text {$\#$1})+2 \text {$\#$1} a \log (x-\text {$\#$1})+4 y(x) \log (x-\text {$\#$1})+4 \log (x-\text {$\#$1})}{3 \text {$\#$1}^4+12 \text {$\#$1}^3 a+12 \text {$\#$1}^2 a^2+24 \text {$\#$1}^2 y(x)+48 \text {$\#$1} a y(x)+8 a+48 y(x)^2}\& \right ]=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.059 (sec), leaf count = 41
\[\left \{y \left (x \right ) = -\frac {a x}{2}-\frac {x^{2}}{4}+\RootOf \left (c_{1}-x +\int _{}^{\textit {\_Z}}\frac {2 \textit {\_a} +2}{2 \textit {\_a}^{3}+\textit {\_a} a +a}d \textit {\_a} \right )\right \}\]