\[ y'(x)=\frac {x \left (12 e^{-x^2} x^2 y(x)^2+8 e^{-x^2} x^2 y(x)-8 e^{-x^2} y(x)+4 e^{-2 x^2} x^2+8 e^{-x^2} x^2-8 e^{-x^2}+e^{-3 x^2} x^6-6 e^{-2 x^2} x^4 y(x)-4 e^{-2 x^2} x^4-8 y(x)^3\right )}{4 e^{-x^2} x^2-8 y(x)-8} \] ✓ Mathematica : cpu = 0.747656 (sec), leaf count = 150
\[\left \{\left \{y(x)\to -\frac {1}{2} e^{-x^2} \left (2 e^{x^2}-x^2\right )+\frac {e^{-3 x^2}}{8 \left (\frac {1}{8} e^{-3 x^2}-\frac {e^{-3 x^2}}{\sqrt {-64 x^2+c_1}}\right )}\right \},\left \{y(x)\to -\frac {1}{2} e^{-x^2} \left (2 e^{x^2}-x^2\right )+\frac {e^{-3 x^2}}{8 \left (\frac {1}{8} e^{-3 x^2}+\frac {e^{-3 x^2}}{\sqrt {-64 x^2+c_1}}\right )}\right \}\right \}\] ✓ Maple : cpu = 0.15 (sec), leaf count = 85
\[\left \{y \left (x \right ) = \frac {\left (\sqrt {-x^{2}+c_{1}}-1\right ) x^{2} {\mathrm e}^{-x^{2}}+2}{2 \sqrt {-x^{2}+c_{1}}-2}, y \left (x \right ) = \frac {\left (\sqrt {-x^{2}+c_{1}}+1\right ) x^{2} {\mathrm e}^{-x^{2}}-2}{2 \sqrt {-x^{2}+c_{1}}+2}\right \}\]