\[ \text {Global$\grave { }$x}^2+\left (\text {Global$\grave { }$y}(\text {Global$\grave { }$x})^3-3 \text {Global$\grave { }$x}\right ) \text {Global$\grave { }$y}'(\text {Global$\grave { }$x})-3 \text {Global$\grave { }$y}(\text {Global$\grave { }$x})=0 \] ✓ Mathematica : cpu = 0.0973603 (sec), leaf count = 1277
\[\left \{\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to -\frac {1}{2} \sqrt {\frac {16 \sqrt [3]{2} \left (\text {Global$\grave { }$x}^3+3 c_1\right )}{\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}+\frac {\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}}-\frac {1}{2} \sqrt {-\frac {24 \text {Global$\grave { }$x}}{\sqrt {\frac {16 \sqrt [3]{2} \left (\text {Global$\grave { }$x}^3+3 c_1\right )}{\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}+\frac {\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}}}-\frac {\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}-\frac {16 \sqrt [3]{2} \left (\text {Global$\grave { }$x}^3+3 c_1\right )}{\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \frac {1}{2} \sqrt {-\frac {24 \text {Global$\grave { }$x}}{\sqrt {\frac {16 \sqrt [3]{2} \left (\text {Global$\grave { }$x}^3+3 c_1\right )}{\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}+\frac {\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}}}-\frac {\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}-\frac {16 \sqrt [3]{2} \left (\text {Global$\grave { }$x}^3+3 c_1\right )}{\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}}-\frac {1}{2} \sqrt {\frac {16 \sqrt [3]{2} \left (\text {Global$\grave { }$x}^3+3 c_1\right )}{\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}+\frac {\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \frac {1}{2} \sqrt {\frac {16 \sqrt [3]{2} \left (\text {Global$\grave { }$x}^3+3 c_1\right )}{\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}+\frac {\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}}-\frac {1}{2} \sqrt {\frac {24 \text {Global$\grave { }$x}}{\sqrt {\frac {16 \sqrt [3]{2} \left (\text {Global$\grave { }$x}^3+3 c_1\right )}{\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}+\frac {\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}}}-\frac {\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}-\frac {16 \sqrt [3]{2} \left (\text {Global$\grave { }$x}^3+3 c_1\right )}{\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \frac {1}{2} \sqrt {\frac {16 \sqrt [3]{2} \left (\text {Global$\grave { }$x}^3+3 c_1\right )}{\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}+\frac {\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}}+\frac {1}{2} \sqrt {\frac {24 \text {Global$\grave { }$x}}{\sqrt {\frac {16 \sqrt [3]{2} \left (\text {Global$\grave { }$x}^3+3 c_1\right )}{\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}+\frac {\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}}}-\frac {\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}-\frac {16 \sqrt [3]{2} \left (\text {Global$\grave { }$x}^3+3 c_1\right )}{\sqrt [3]{104976 \text {Global$\grave { }$x}^2-\sqrt {11019960576 \text {Global$\grave { }$x}^4-4 \left (144 \text {Global$\grave { }$x}^3+432 c_1\right ){}^3}}}}\right \}\right \}\]
✓ Maple : cpu = 0.022 (sec), leaf count = 21
\[ \left \{ {\frac {{x}^{3}}{3}}-3\,xy \left ( x \right ) +{\frac { \left ( y \left ( x \right ) \right ) ^{4}}{4}}+{\it \_C1}=0 \right \} \]