\[ \left (\text {Global$\grave { }$y}(\text {Global$\grave { }$x})^3-\text {Global$\grave { }$x}^3\right ) \text {Global$\grave { }$y}'(\text {Global$\grave { }$x})-\text {Global$\grave { }$x}^2 \text {Global$\grave { }$y}(\text {Global$\grave { }$x})=0 \] ✓ Mathematica : cpu = 0.0488769 (sec), leaf count = 201
\[\left \{\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \sqrt [3]{\text {Global$\grave { }$x}^3-\sqrt {\text {Global$\grave { }$x}^6-e^{6 c_1}}}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to -\sqrt [3]{-1} \sqrt [3]{\text {Global$\grave { }$x}^3-\sqrt {\text {Global$\grave { }$x}^6-e^{6 c_1}}}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to (-1)^{2/3} \sqrt [3]{\text {Global$\grave { }$x}^3-\sqrt {\text {Global$\grave { }$x}^6-e^{6 c_1}}}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \sqrt [3]{\sqrt {\text {Global$\grave { }$x}^6-e^{6 c_1}}+\text {Global$\grave { }$x}^3}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to -\sqrt [3]{-1} \sqrt [3]{\sqrt {\text {Global$\grave { }$x}^6-e^{6 c_1}}+\text {Global$\grave { }$x}^3}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to (-1)^{2/3} \sqrt [3]{\sqrt {\text {Global$\grave { }$x}^6-e^{6 c_1}}+\text {Global$\grave { }$x}^3}\right \}\right \}\]
✓ Maple : cpu = 0.37 (sec), leaf count = 391
\[ \left \{ y \left ( x \right ) ={x{\frac {1}{\sqrt [3]{- \left ( {x}^{3}{\it \_C1}-\sqrt {{{\it \_C1}}^{2}{x}^{6}+1} \right ) {x}^{3}{\it \_C1}}}}},y \left ( x \right ) ={x{\frac {1}{\sqrt [3]{- \left ( {x}^{3}{\it \_C1}+\sqrt {{{\it \_C1}}^{2}{x}^{6}+1} \right ) {x}^{3}{\it \_C1}}}}},y \left ( x \right ) ={\frac {x}{ \left ( -{\frac {1}{2}}-{\frac {i}{2}}\sqrt {3} \right ) ^{2}}{\frac {1}{\sqrt [3]{- \left ( {x}^{3}{\it \_C1}-\sqrt {{{\it \_C1}}^{2}{x}^{6}+1} \right ) {x}^{3}{\it \_C1}}}}},y \left ( x \right ) ={\frac {x}{ \left ( -{\frac {1}{2}}-{\frac {i}{2}}\sqrt {3} \right ) ^{2}}{\frac {1}{\sqrt [3]{- \left ( {x}^{3}{\it \_C1}+\sqrt {{{\it \_C1}}^{2}{x}^{6}+1} \right ) {x}^{3}{\it \_C1}}}}},y \left ( x \right ) ={\frac {x}{ \left ( -{\frac {1}{2}}+{\frac {i}{2}}\sqrt {3} \right ) ^{2}}{\frac {1}{\sqrt [3]{- \left ( {x}^{3}{\it \_C1}-\sqrt {{{\it \_C1}}^{2}{x}^{6}+1} \right ) {x}^{3}{\it \_C1}}}}},y \left ( x \right ) ={\frac {x}{ \left ( -{\frac {1}{2}}+{\frac {i}{2}}\sqrt {3} \right ) ^{2}}{\frac {1}{\sqrt [3]{- \left ( {x}^{3}{\it \_C1}+\sqrt {{{\it \_C1}}^{2}{x}^{6}+1} \right ) {x}^{3}{\it \_C1}}}}},y \left ( x \right ) ={\frac {x}{ \left ( {\frac {1}{2}}-{\frac {i}{2}}\sqrt {3} \right ) ^{2}}{\frac {1}{\sqrt [3]{- \left ( {x}^{3}{\it \_C1}-\sqrt {{{\it \_C1}}^{2}{x}^{6}+1} \right ) {x}^{3}{\it \_C1}}}}},y \left ( x \right ) ={\frac {x}{ \left ( {\frac {1}{2}}-{\frac {i}{2}}\sqrt {3} \right ) ^{2}}{\frac {1}{\sqrt [3]{- \left ( {x}^{3}{\it \_C1}+\sqrt {{{\it \_C1}}^{2}{x}^{6}+1} \right ) {x}^{3}{\it \_C1}}}}},y \left ( x \right ) ={\frac {x}{ \left ( {\frac {1}{2}}+{\frac {i}{2}}\sqrt {3} \right ) ^{2}}{\frac {1}{\sqrt [3]{- \left ( {x}^{3}{\it \_C1}-\sqrt {{{\it \_C1}}^{2}{x}^{6}+1} \right ) {x}^{3}{\it \_C1}}}}},y \left ( x \right ) ={\frac {x}{ \left ( {\frac {1}{2}}+{\frac {i}{2}}\sqrt {3} \right ) ^{2}}{\frac {1}{\sqrt [3]{- \left ( {x}^{3}{\it \_C1}+\sqrt {{{\it \_C1}}^{2}{x}^{6}+1} \right ) {x}^{3}{\it \_C1}}}}} \right \} \]