\[ \text {Global$\grave { }$y}(\text {Global$\grave { }$x}) \left (\text {Global$\grave { }$a}+\text {Global$\grave { }$x}^2+\text {Global$\grave { }$y}(\text {Global$\grave { }$x})^2\right ) \text {Global$\grave { }$y}'(\text {Global$\grave { }$x})+\text {Global$\grave { }$x} \left (-\text {Global$\grave { }$a}+\text {Global$\grave { }$x}^2+\text {Global$\grave { }$y}(\text {Global$\grave { }$x})^2\right )=0 \] ✓ Mathematica : cpu = 0.0247964 (sec), leaf count = 149
\[\left \{\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to -\sqrt {-\sqrt {4 c_1+\text {Global$\grave { }$a}^2+4 \text {Global$\grave { }$a} \text {Global$\grave { }$x}^2}-\text {Global$\grave { }$a}-\text {Global$\grave { }$x}^2}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \sqrt {-\sqrt {4 c_1+\text {Global$\grave { }$a}^2+4 \text {Global$\grave { }$a} \text {Global$\grave { }$x}^2}-\text {Global$\grave { }$a}-\text {Global$\grave { }$x}^2}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to -\sqrt {\sqrt {4 c_1+\text {Global$\grave { }$a}^2+4 \text {Global$\grave { }$a} \text {Global$\grave { }$x}^2}-\text {Global$\grave { }$a}-\text {Global$\grave { }$x}^2}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \sqrt {\sqrt {4 c_1+\text {Global$\grave { }$a}^2+4 \text {Global$\grave { }$a} \text {Global$\grave { }$x}^2}-\text {Global$\grave { }$a}-\text {Global$\grave { }$x}^2}\right \}\right \}\]
✓ Maple : cpu = 0.051 (sec), leaf count = 125
\[ \left \{ y \left ( x \right ) =\sqrt {-{x}^{2}-a-\sqrt {4\,a{x}^{2}+{a}^{2}-4\,{\it \_C1}}},y \left ( x \right ) =\sqrt {-{x}^{2}-a+\sqrt {4\,a{x}^{2}+{a}^{2}-4\,{\it \_C1}}},y \left ( x \right ) =-\sqrt {-{x}^{2}-a-\sqrt {4\,a{x}^{2}+{a}^{2}-4\,{\it \_C1}}},y \left ( x \right ) =-\sqrt {-{x}^{2}-a+\sqrt {4\,a{x}^{2}+{a}^{2}-4\,{\it \_C1}}} \right \} \]