\[ \text {Global$\grave { }$x} \left (2 e^{-\text {Global$\grave { }$x} \text {Global$\grave { }$y}(\text {Global$\grave { }$x})}+3 e^{\text {Global$\grave { }$x} \text {Global$\grave { }$y}(\text {Global$\grave { }$x})}\right ) \left (\text {Global$\grave { }$x} \text {Global$\grave { }$y}'(\text {Global$\grave { }$x})+\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\right )+1=0 \] ✓ Mathematica : cpu = 0.254407 (sec), leaf count = 163
\[\left \{\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to -\frac {\cosh ^{-1}\left (\frac {1}{24} \left (-5 \sqrt {\log ^2\left (\frac {c_1}{\text {Global$\grave { }$x}}\right )+24}-\log \left (\frac {c_1}{\text {Global$\grave { }$x}}\right )\right )\right )}{\text {Global$\grave { }$x}}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \frac {\cosh ^{-1}\left (\frac {1}{24} \left (-5 \sqrt {\log ^2\left (\frac {c_1}{\text {Global$\grave { }$x}}\right )+24}-\log \left (\frac {c_1}{\text {Global$\grave { }$x}}\right )\right )\right )}{\text {Global$\grave { }$x}}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to -\frac {\cosh ^{-1}\left (\frac {1}{24} \left (5 \sqrt {\log ^2\left (\frac {c_1}{\text {Global$\grave { }$x}}\right )+24}-\log \left (\frac {c_1}{\text {Global$\grave { }$x}}\right )\right )\right )}{\text {Global$\grave { }$x}}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \frac {\cosh ^{-1}\left (\frac {1}{24} \left (5 \sqrt {\log ^2\left (\frac {c_1}{\text {Global$\grave { }$x}}\right )+24}-\log \left (\frac {c_1}{\text {Global$\grave { }$x}}\right )\right )\right )}{\text {Global$\grave { }$x}}\right \}\right \}\]
✓ Maple : cpu = 0.043 (sec), leaf count = 17
\[ \left \{ y \left ( x \right ) ={\frac {1}{x}\ln \left ( -{\frac {\ln \left ( x \right ) }{5}}+{\frac {{\it \_C1}}{5}} \right ) } \right \} \]