\[ \text {Global$\grave { }$y}'(\text {Global$\grave { }$x}) (\log (\text {Global$\grave { }$y}(\text {Global$\grave { }$x}))+\text {Global$\grave { }$x})-1=0 \] ✓ Mathematica : cpu = 0.037396 (sec), leaf count = 35
\[\text {Solve}\left [\text {Global$\grave { }$x}=c_1 e^{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})}+e^{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})} \left (\text {Ei}(-\text {Global$\grave { }$y}(\text {Global$\grave { }$x}))-e^{-\text {Global$\grave { }$y}(\text {Global$\grave { }$x})} \log (\text {Global$\grave { }$y}(\text {Global$\grave { }$x}))\right ),\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\right ]\]
✓ Maple : cpu = 0.052 (sec), leaf count = 27
\[ \left \{ y \left ( x \right ) ={{\rm e}^{{\it RootOf} \left ( -{\it \_Z}-x-{{\rm e}^{{{\rm e}^{{\it \_Z}}}}}{\it Ei} \left ( 1,{{\rm e}^{{\it \_Z}}} \right ) +{\it \_C1}\,{{\rm e}^{{{\rm e}^{{\it \_Z}}}}} \right ) }} \right \} \]