2.402   ODE No. 402

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

\[ \text {Global$\grave { }$x}^2+4 \text {Global$\grave { }$x} \text {Global$\grave { }$y}'(\text {Global$\grave { }$x})+3 \text {Global$\grave { }$y}'(\text {Global$\grave { }$x})^2-\text {Global$\grave { }$y}(\text {Global$\grave { }$x})=0 \] Mathematica : cpu = 3744.49 (sec), leaf count = 0 , timed out

$Aborted

Maple : cpu = 0.179 (sec), leaf count = 117

\[ \left \{ y \left ( x \right ) =-{\frac {{x}^{2}}{3}},y \left ( x \right ) =-{\frac {5\,{{\it \_C1}}^{2}{x}^{2}+2\,{\it \_C1}\,x \left ( -{\it \_C1}\,x+\sqrt {3} \right ) -3}{12\,{{\it \_C1}}^{2}}},y \left ( x \right ) =-{\frac {5\,{{\it \_C1}}^{2}{x}^{2}-2\,{\it \_C1}\,x \left ( {\it \_C1}\,x+\sqrt {3} \right ) -3}{12\,{{\it \_C1}}^{2}}},y \left ( x \right ) =-{\frac {5\,{x}^{2}}{12}}+{\frac {x \left ( x-\sqrt {3}{\it \_C1} \right ) }{6}}+{\frac {{{\it \_C1}}^{2}}{4}},y \left ( x \right ) =-{\frac {5\,{x}^{2}}{12}}+{\frac {x \left ( x+\sqrt {3}{\it \_C1} \right ) }{6}}+{\frac {{{\it \_C1}}^{2}}{4}} \right \} \]