\[ \text {Global$\grave { }$a} \text {Global$\grave { }$y}'(\text {Global$\grave { }$x})^2+\text {Global$\grave { }$b} \text {Global$\grave { }$y}'(\text {Global$\grave { }$x})-\text {Global$\grave { }$y}(\text {Global$\grave { }$x})=0 \] ✓ Mathematica : cpu = 0.293393 (sec), leaf count = 116
\[\left \{\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \text {InverseFunction}\left [\frac {\sqrt {4 \text {$\#$1} \text {Global$\grave { }$a}+\text {Global$\grave { }$b}^2}+\text {Global$\grave { }$b} \log \left (\sqrt {4 \text {$\#$1} \text {Global$\grave { }$a}+\text {Global$\grave { }$b}^2}-\text {Global$\grave { }$b}\right )}{2 \text {Global$\grave { }$a}}\& \right ]\left [c_1+\frac {\text {Global$\grave { }$x}}{2 \text {Global$\grave { }$a}}\right ]\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \text {InverseFunction}\left [\frac {\sqrt {4 \text {$\#$1} \text {Global$\grave { }$a}+\text {Global$\grave { }$b}^2}-\text {Global$\grave { }$b} \log \left (\sqrt {4 \text {$\#$1} \text {Global$\grave { }$a}+\text {Global$\grave { }$b}^2}+\text {Global$\grave { }$b}\right )}{2 \text {Global$\grave { }$a}}\& \right ]\left [c_1-\frac {\text {Global$\grave { }$x}}{2 \text {Global$\grave { }$a}}\right ]\right \}\right \}\]
✓ Maple : cpu = 0.6 (sec), leaf count = 197
\[ \left \{ y \left ( x \right ) ={\frac {1}{4\,a}{{\rm e}^{-{\frac {1}{2\,b} \left ( 2\,b{\it lambertW} \left ( 2\,{\frac {{{\rm e}^{-1}}}{b\sqrt {{a}^{-1}}}{{\rm e}^{{\frac {x}{b}}}} \left ( {{\rm e}^{{\frac {{\it \_C1}}{b}}}} \right ) ^{-1}} \right ) +b\ln \left ( {\frac {1}{4\,a}} \right ) +2\,{\it \_C1}+2\,b-2\,x \right ) }}} \left ( {{\rm e}^{-{\frac {1}{2\,b} \left ( 2\,b{\it lambertW} \left ( 2\,{\frac {{{\rm e}^{-1}}}{b\sqrt {{a}^{-1}}}{{\rm e}^{{\frac {x}{b}}}} \left ( {{\rm e}^{{\frac {{\it \_C1}}{b}}}} \right ) ^{-1}} \right ) +b\ln \left ( {\frac {1}{4\,a}} \right ) +2\,{\it \_C1}+2\,b-2\,x \right ) }}}+2\,b \right ) },y \left ( x \right ) ={\frac {1}{4\,a}{{\rm e}^{{\it RootOf} \left ( b\ln \left ( {\frac { \left ( {{\rm e}^{{\it \_Z}}}+2\,b \right ) ^{2}}{4\,a}} \right ) -2\,{{\rm e}^{{\it \_Z}}}+2\,{\it \_C1}-2\,b-2\,x \right ) }} \left ( {{\rm e}^{{\it RootOf} \left ( b\ln \left ( {\frac { \left ( {{\rm e}^{{\it \_Z}}}+2\,b \right ) ^{2}}{4\,a}} \right ) -2\,{{\rm e}^{{\it \_Z}}}+2\,{\it \_C1}-2\,b-2\,x \right ) }}+2\,b \right ) } \right \} \]