\[ x \left (x^2+1\right ) y'(x)-x^2 y(x)+y(x)^3 \left (-y'(x)^2\right )+x y(x)^2 y'(x)^3=0 \] ✗ Mathematica : cpu = 741.22 (sec), leaf count = 0 , could not solve
DSolve[-(x^2*y[x]) + x*(1 + x^2)*Derivative[1][y][x] - y[x]^3*Derivative[1][y][x]^2 + x*y[x]^2*Derivative[1][y][x]^3 == 0, y[x], x]
✓ Maple : cpu = 1.547 (sec), leaf count = 325
\[ \left \{ y \left ( x \right ) =-{\frac {i}{2}}\sqrt [4]{-16\,{x}^{4}+40\,{x}^{2}+2-2\,\sqrt {-512\,{x}^{6}+192\,{x}^{4}-24\,{x}^{2}+1}},y \left ( x \right ) =-{\frac {i}{2}}\sqrt [4]{-16\,{x}^{4}+40\,{x}^{2}+2+2\,\sqrt {-512\,{x}^{6}+192\,{x}^{4}-24\,{x}^{2}+1}},y \left ( x \right ) ={\frac {i}{2}}\sqrt [4]{-16\,{x}^{4}+40\,{x}^{2}+2-2\,\sqrt {-512\,{x}^{6}+192\,{x}^{4}-24\,{x}^{2}+1}},y \left ( x \right ) ={\frac {i}{2}}\sqrt [4]{-16\,{x}^{4}+40\,{x}^{2}+2+2\,\sqrt {-512\,{x}^{6}+192\,{x}^{4}-24\,{x}^{2}+1}},y \left ( x \right ) =-{\frac {1}{2}\sqrt [4]{-16\,{x}^{4}+40\,{x}^{2}+2-2\,\sqrt {-512\,{x}^{6}+192\,{x}^{4}-24\,{x}^{2}+1}}},y \left ( x \right ) ={\frac {1}{2}\sqrt [4]{-16\,{x}^{4}+40\,{x}^{2}+2-2\,\sqrt {-512\,{x}^{6}+192\,{x}^{4}-24\,{x}^{2}+1}}},y \left ( x \right ) =-{\frac {1}{2}\sqrt [4]{-16\,{x}^{4}+40\,{x}^{2}+2+2\,\sqrt {-512\,{x}^{6}+192\,{x}^{4}-24\,{x}^{2}+1}}},y \left ( x \right ) ={\frac {1}{2}\sqrt [4]{-16\,{x}^{4}+40\,{x}^{2}+2+2\,\sqrt {-512\,{x}^{6}+192\,{x}^{4}-24\,{x}^{2}+1}}} \right \} \]