\[ x^7 y(x)^2 y'(x)^3-\left (3 x^6 y(x)^3-1\right ) y'(x)^2+3 x^5 y(x)^4 y'(x)-x^4 y(x)^5=0 \] ✗ Mathematica : cpu = 3599.93 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 1.021 (sec), leaf count = 7860
\[ \left \{ \int _{{\it \_b}}^{x}\!-{\frac {1}{{\it \_a}} \left ( 6\,\sqrt [3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-24\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}+ \left ( -108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8 \right ) ^{{\frac {2}{3}}}-2\,\sqrt [3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}+4 \right ) \left ( 18\,\sqrt [3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-24\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}+ \left ( -108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8 \right ) ^{{\frac {2}{3}}}-2\,\sqrt [3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}+4 \right ) ^{-1}}\,{\rm d}{\it \_a}+\int ^{y \left ( x \right ) }\!6\,{{x}^{6}{{\it \_f}}^{2}\sqrt [3]{-108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8} \left ( 18\,\sqrt [3]{-108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8}{x}^{6}{{\it \_f}}^{3}-24\,{x}^{6}{{\it \_f}}^{3}+ \left ( -108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8 \right ) ^{2/3}-2\,\sqrt [3]{-108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8}+4 \right ) ^{-1}}-\int _{{\it \_b}}^{x}\!-{\frac {1}{{\it \_a}} \left ( 2\,{{{\it \_a}}^{6}{{\it \_f}}^{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{-2/3}}+18\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{2}-72\,{{\it \_a}}^{6}{{\it \_f}}^{2}+{\frac {2}{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) {\frac {1}{\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}}}}-{\frac {2}{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{-{\frac {2}{3}}}} \right ) \left ( 18\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{3}-24\,{{\it \_a}}^{6}{{\it \_f}}^{3}+ \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}-2\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}+4 \right ) ^{-1}}+{\frac {1}{{\it \_a}} \left ( 6\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{3}-24\,{{\it \_a}}^{6}{{\it \_f}}^{3}+ \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}-2\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}+4 \right ) \left ( 6\,{{{\it \_a}}^{6}{{\it \_f}}^{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{-2/3}}+54\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{2}-72\,{{\it \_a}}^{6}{{\it \_f}}^{2}+{\frac {2}{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) {\frac {1}{\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}}}}-{\frac {2}{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{-{\frac {2}{3}}}} \right ) \left ( 18\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{3}-24\,{{\it \_a}}^{6}{{\it \_f}}^{3}+ \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}-2\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}+4 \right ) ^{-2}}\,{\rm d}{\it \_a}{d{\it \_f}}+{\it \_C1}=0,\int _{{\it \_b}}^{x}\!-{\frac {1}{{\it \_a}} \left ( 24\,i\sqrt {3}{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-12\,\sqrt [3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-24\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}+i \left ( -108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8 \right ) ^{{\frac {2}{3}}}\sqrt {3}+ \left ( -108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8 \right ) ^{{\frac {2}{3}}}-4\,i\sqrt {3}+4\,\sqrt [3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}+4 \right ) \left ( 24\,i\sqrt {3}{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-36\,\sqrt [3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-24\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}+i \left ( -108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8 \right ) ^{{\frac {2}{3}}}\sqrt {3}+ \left ( -108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8 \right ) ^{{\frac {2}{3}}}-4\,i\sqrt {3}+4\,\sqrt [3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}+4 \right ) ^{-1}}\,{\rm d}{\it \_a}+\int ^{y \left ( x \right ) }\!-12\,{{x}^{6}{{\it \_f}}^{2}\sqrt [3]{-108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8} \left ( 24\,i\sqrt {3}{x}^{6}{{\it \_f}}^{3}-36\,\sqrt [3]{-108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8}{x}^{6}{{\it \_f}}^{3}-24\,{x}^{6}{{\it \_f}}^{3}+i \left ( -108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8 \right ) ^{2/3}\sqrt {3}+ \left ( -108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8 \right ) ^{2/3}-4\,i\sqrt {3}+4\,\sqrt [3]{-108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8}+4 \right ) ^{-1}}-\int _{{\it \_b}}^{x}\!-{\frac {1}{{\it \_a}} \left ( 72\,i\sqrt {3}{{\it \_a}}^{6}{{\it \_f}}^{2}-4\,{{{\it \_a}}^{6}{{\it \_f}}^{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{-2/3}}-36\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{2}-72\,{{\it \_a}}^{6}{{\it \_f}}^{2}+{{\frac {2\,i}{3}}\sqrt {3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) {\frac {1}{\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}}}}+{\frac {2}{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) {\frac {1}{\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}}}}+{\frac {4}{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{-{\frac {2}{3}}}} \right ) \left ( 24\,i\sqrt {3}{{\it \_a}}^{6}{{\it \_f}}^{3}-36\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{3}-24\,{{\it \_a}}^{6}{{\it \_f}}^{3}+i \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}\sqrt {3}+ \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}-4\,i\sqrt {3}+4\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}+4 \right ) ^{-1}}+{\frac {1}{{\it \_a}} \left ( 24\,i\sqrt {3}{{\it \_a}}^{6}{{\it \_f}}^{3}-12\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{3}-24\,{{\it \_a}}^{6}{{\it \_f}}^{3}+i \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}\sqrt {3}+ \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}-4\,i\sqrt {3}+4\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}+4 \right ) \left ( 72\,i\sqrt {3}{{\it \_a}}^{6}{{\it \_f}}^{2}-12\,{{{\it \_a}}^{6}{{\it \_f}}^{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{-2/3}}-108\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{2}-72\,{{\it \_a}}^{6}{{\it \_f}}^{2}+{{\frac {2\,i}{3}}\sqrt {3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) {\frac {1}{\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}}}}+{\frac {2}{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) {\frac {1}{\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}}}}+{\frac {4}{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{-{\frac {2}{3}}}} \right ) \left ( 24\,i\sqrt {3}{{\it \_a}}^{6}{{\it \_f}}^{3}-36\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{3}-24\,{{\it \_a}}^{6}{{\it \_f}}^{3}+i \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}\sqrt {3}+ \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}-4\,i\sqrt {3}+4\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}+4 \right ) ^{-2}}\,{\rm d}{\it \_a}{d{\it \_f}}+{\it \_C1}=0,\int _{{\it \_b}}^{x}\!-{\frac {1}{{\it \_a}} \left ( 24\,i\sqrt {3}{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}+12\,\sqrt [3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}+24\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}+i \left ( -108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8 \right ) ^{{\frac {2}{3}}}\sqrt {3}- \left ( -108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8 \right ) ^{{\frac {2}{3}}}-4\,i\sqrt {3}-4\,\sqrt [3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}-4 \right ) \left ( 24\,i\sqrt {3}{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}+36\,\sqrt [3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}+24\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}+i \left ( -108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8 \right ) ^{{\frac {2}{3}}}\sqrt {3}- \left ( -108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8 \right ) ^{{\frac {2}{3}}}-4\,i\sqrt {3}-4\,\sqrt [3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}-4 \right ) ^{-1}}\,{\rm d}{\it \_a}+\int ^{y \left ( x \right ) }\!12\,{{x}^{6}{{\it \_f}}^{2}\sqrt [3]{-108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8} \left ( 24\,i\sqrt {3}{x}^{6}{{\it \_f}}^{3}+36\,\sqrt [3]{-108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8}{x}^{6}{{\it \_f}}^{3}+24\,{x}^{6}{{\it \_f}}^{3}+i \left ( -108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8 \right ) ^{2/3}\sqrt {3}- \left ( -108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8 \right ) ^{2/3}-4\,i\sqrt {3}-4\,\sqrt [3]{-108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8}-4 \right ) ^{-1}}-\int _{{\it \_b}}^{x}\!-{\frac {1}{{\it \_a}} \left ( 72\,i\sqrt {3}{{\it \_a}}^{6}{{\it \_f}}^{2}+4\,{{{\it \_a}}^{6}{{\it \_f}}^{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{-2/3}}+36\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{2}+72\,{{\it \_a}}^{6}{{\it \_f}}^{2}+{{\frac {2\,i}{3}}\sqrt {3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) {\frac {1}{\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}}}}-{\frac {2}{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) {\frac {1}{\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}}}}-{\frac {4}{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{-{\frac {2}{3}}}} \right ) \left ( 24\,i\sqrt {3}{{\it \_a}}^{6}{{\it \_f}}^{3}+36\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{3}+24\,{{\it \_a}}^{6}{{\it \_f}}^{3}+i \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}\sqrt {3}- \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}-4\,i\sqrt {3}-4\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}-4 \right ) ^{-1}}+{\frac {1}{{\it \_a}} \left ( 24\,i\sqrt {3}{{\it \_a}}^{6}{{\it \_f}}^{3}+12\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{3}+24\,{{\it \_a}}^{6}{{\it \_f}}^{3}+i \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}\sqrt {3}- \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}-4\,i\sqrt {3}-4\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}-4 \right ) \left ( 72\,i\sqrt {3}{{\it \_a}}^{6}{{\it \_f}}^{2}+12\,{{{\it \_a}}^{6}{{\it \_f}}^{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{-2/3}}+108\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{2}+72\,{{\it \_a}}^{6}{{\it \_f}}^{2}+{{\frac {2\,i}{3}}\sqrt {3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) {\frac {1}{\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}}}}-{\frac {2}{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) {\frac {1}{\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}}}}-{\frac {4}{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{-{\frac {2}{3}}}} \right ) \left ( 24\,i\sqrt {3}{{\it \_a}}^{6}{{\it \_f}}^{3}+36\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{3}+24\,{{\it \_a}}^{6}{{\it \_f}}^{3}+i \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}\sqrt {3}- \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}-4\,i\sqrt {3}-4\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}-4 \right ) ^{-2}}\,{\rm d}{\it \_a}{d{\it \_f}}+{\it \_C1}=0,y \left ( x \right ) ={\frac {{2}^{{\frac {2}{3}}}}{3\,{x}^{2}}},y \left ( x \right ) ={\frac {-{\frac {{2}^{{\frac {2}{3}}}}{2}}-{\frac {i}{2}}\sqrt {3}{2}^{{\frac {2}{3}}}}{3\,{x}^{2}}},y \left ( x \right ) ={\frac {-{\frac {{2}^{{\frac {2}{3}}}}{2}}+{\frac {i}{2}}\sqrt {3}{2}^{{\frac {2}{3}}}}{3\,{x}^{2}}} \right \} \]