\[ y'(x)=-\frac {y(x) \cot (x) \left (x^2 y(x) (-\log (2 x))+x \log (2 x)+\tan (x)\right )}{x} \] ✗ Mathematica : cpu = 3600.1 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 0.325 (sec), leaf count = 69
\[ \left \{ y \left ( x \right ) ={1{{\rm e}^{\int \!-{\frac {x\ln \left ( x \right ) +x\ln \left ( 2 \right ) +\tan \left ( x \right ) }{x\tan \left ( x \right ) }}\,{\rm d}x}} \left ( \int \!-{\frac {x \left ( \ln \left ( 2 \right ) +\ln \left ( x \right ) \right ) }{\tan \left ( x \right ) }{{\rm e}^{\int \!-{\frac {x\ln \left ( x \right ) +x\ln \left ( 2 \right ) +\tan \left ( x \right ) }{x\tan \left ( x \right ) }}\,{\rm d}x}}}\,{\rm d}x+{\it \_C1} \right ) ^{-1}} \right \} \]