\[ y'(x)=\frac {y(x) (y(x)+x)}{x \left (y(x)^3+x\right )} \] ✓ Mathematica : cpu = 0.387185 (sec), leaf count = 285
\[\left \{\left \{y(x)\to \frac {2 \sqrt [3]{2} \left (c_1+\log (x)\right )}{\sqrt [3]{\sqrt {2916 x^2-864 \left (c_1+\log (x)\right ){}^3}+54 x}}+\frac {\sqrt [3]{\sqrt {2916 x^2-864 \left (c_1+\log (x)\right ){}^3}+54 x}}{3 \sqrt [3]{2}}\right \},\left \{y(x)\to -\frac {\sqrt [3]{2} \left (1+i \sqrt {3}\right ) \left (c_1+\log (x)\right )}{\sqrt [3]{\sqrt {2916 x^2-864 \left (c_1+\log (x)\right ){}^3}+54 x}}-\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{\sqrt {2916 x^2-864 \left (c_1+\log (x)\right ){}^3}+54 x}}{6 \sqrt [3]{2}}\right \},\left \{y(x)\to -\frac {\sqrt [3]{2} \left (1-i \sqrt {3}\right ) \left (c_1+\log (x)\right )}{\sqrt [3]{\sqrt {2916 x^2-864 \left (c_1+\log (x)\right ){}^3}+54 x}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{\sqrt {2916 x^2-864 \left (c_1+\log (x)\right ){}^3}+54 x}}{6 \sqrt [3]{2}}\right \}\right \}\]
✓ Maple : cpu = 0.112 (sec), leaf count = 497
\[ \left \{ y \left ( x \right ) ={\frac {1}{3}\sqrt [3]{27\,x+3\,\sqrt {-24\,{{\it \_C1}}^{3}-72\,{{\it \_C1}}^{2}\ln \left ( x \right ) -72\,{\it \_C1}\, \left ( \ln \left ( x \right ) \right ) ^{2}-24\, \left ( \ln \left ( x \right ) \right ) ^{3}+81\,{x}^{2}}}}-3\,{\frac {-2/3\,{\it \_C1}-2/3\,\ln \left ( x \right ) }{\sqrt [3]{27\,x+3\,\sqrt {-24\,{{\it \_C1}}^{3}-72\,{{\it \_C1}}^{2}\ln \left ( x \right ) -72\,{\it \_C1}\, \left ( \ln \left ( x \right ) \right ) ^{2}-24\, \left ( \ln \left ( x \right ) \right ) ^{3}+81\,{x}^{2}}}}},y \left ( x \right ) =-{\frac {1}{6}\sqrt [3]{27\,x+3\,\sqrt {-24\,{{\it \_C1}}^{3}-72\,{{\it \_C1}}^{2}\ln \left ( x \right ) -72\,{\it \_C1}\, \left ( \ln \left ( x \right ) \right ) ^{2}-24\, \left ( \ln \left ( x \right ) \right ) ^{3}+81\,{x}^{2}}}}+{\frac {3}{2} \left ( -{\frac {2\,{\it \_C1}}{3}}-{\frac {2\,\ln \left ( x \right ) }{3}} \right ) {\frac {1}{\sqrt [3]{27\,x+3\,\sqrt {-24\,{{\it \_C1}}^{3}-72\,{{\it \_C1}}^{2}\ln \left ( x \right ) -72\,{\it \_C1}\, \left ( \ln \left ( x \right ) \right ) ^{2}-24\, \left ( \ln \left ( x \right ) \right ) ^{3}+81\,{x}^{2}}}}}}-{\frac {i}{2}}\sqrt {3} \left ( {\frac {1}{3}\sqrt [3]{27\,x+3\,\sqrt {-24\,{{\it \_C1}}^{3}-72\,{{\it \_C1}}^{2}\ln \left ( x \right ) -72\,{\it \_C1}\, \left ( \ln \left ( x \right ) \right ) ^{2}-24\, \left ( \ln \left ( x \right ) \right ) ^{3}+81\,{x}^{2}}}}+3\,{\frac {-2/3\,{\it \_C1}-2/3\,\ln \left ( x \right ) }{\sqrt [3]{27\,x+3\,\sqrt {-24\,{{\it \_C1}}^{3}-72\,{{\it \_C1}}^{2}\ln \left ( x \right ) -72\,{\it \_C1}\, \left ( \ln \left ( x \right ) \right ) ^{2}-24\, \left ( \ln \left ( x \right ) \right ) ^{3}+81\,{x}^{2}}}}} \right ) ,y \left ( x \right ) =-{\frac {1}{6}\sqrt [3]{27\,x+3\,\sqrt {-24\,{{\it \_C1}}^{3}-72\,{{\it \_C1}}^{2}\ln \left ( x \right ) -72\,{\it \_C1}\, \left ( \ln \left ( x \right ) \right ) ^{2}-24\, \left ( \ln \left ( x \right ) \right ) ^{3}+81\,{x}^{2}}}}+{\frac {3}{2} \left ( -{\frac {2\,{\it \_C1}}{3}}-{\frac {2\,\ln \left ( x \right ) }{3}} \right ) {\frac {1}{\sqrt [3]{27\,x+3\,\sqrt {-24\,{{\it \_C1}}^{3}-72\,{{\it \_C1}}^{2}\ln \left ( x \right ) -72\,{\it \_C1}\, \left ( \ln \left ( x \right ) \right ) ^{2}-24\, \left ( \ln \left ( x \right ) \right ) ^{3}+81\,{x}^{2}}}}}}+{\frac {i}{2}}\sqrt {3} \left ( {\frac {1}{3}\sqrt [3]{27\,x+3\,\sqrt {-24\,{{\it \_C1}}^{3}-72\,{{\it \_C1}}^{2}\ln \left ( x \right ) -72\,{\it \_C1}\, \left ( \ln \left ( x \right ) \right ) ^{2}-24\, \left ( \ln \left ( x \right ) \right ) ^{3}+81\,{x}^{2}}}}+3\,{\frac {-2/3\,{\it \_C1}-2/3\,\ln \left ( x \right ) }{\sqrt [3]{27\,x+3\,\sqrt {-24\,{{\it \_C1}}^{3}-72\,{{\it \_C1}}^{2}\ln \left ( x \right ) -72\,{\it \_C1}\, \left ( \ln \left ( x \right ) \right ) ^{2}-24\, \left ( \ln \left ( x \right ) \right ) ^{3}+81\,{x}^{2}}}}} \right ) \right \} \]