\[ \boxed { {\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) =-{\frac {bx{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) }{ \left ( {x}^{2}-1 \right ) a}}-{\frac { \left ( c{x}^{2}+dx+e \right ) y \left ( x \right ) }{a \left ( {x}^{2}-1 \right ) ^{2}}}=0} \]
Mathematica: cpu = 83.233069 (sec), leaf count = 1763961
Result too large for latex to process
Maple: cpu = 0.157 (sec), leaf count = 613 \[ \left \{ y \left ( x \right ) ={\it \_C1}\, \left ( -{\frac {1}{2}}+{ \frac {x}{2}} \right ) ^{{\frac {1}{4\,a} \left ( 2\,a+\sqrt {4\,{a}^{2} + \left ( -4\,b-4\,c-4\,d-4\,e \right ) a+{b}^{2}} \right ) }} \left ( {x} ^{2}-1 \right ) ^{-{\frac {b}{4\,a}}} {\mbox {$_2$F$_1$}({\frac {1}{4\,a} \left ( \sqrt {4\,{a}^{2}+ \left ( -4\,b-4\,c-4\,d-4\,e \right ) a+{b}^{2}}+2\,\sqrt {{a}^{2}+ \left ( -2\,b-4\,c \right ) a+{b}^{2}}-\sqrt {4\,{a}^{2}+ \left ( -4\,b-4\,c+4\,d-4\,e \right ) a+{b}^{2}}+2\,a \right ) },-{\frac {1}{4\,a} \left ( -\sqrt {4\,{a}^{2}+ \left ( -4\,b-4\,c-4\,d-4\,e \right ) a+{b}^{2}}+2\,\sqrt {{a}^{2}+ \left ( -2\,b-4\,c \right ) a+{b}^{2}}+\sqrt {4\,{a}^{2}+ \left ( -4\,b-4\,c+4\,d-4\,e \right ) a+{b}^{2}}-2\,a \right ) };\,-{\frac {1}{2\,a} \left ( -2\,a+\sqrt {4\,{a}^{2}+ \left ( -4\,b-4\,c+4\,d-4\,e \right ) a+{b}^{2}} \right ) };\,{\frac {1}{2}}+{\frac {x}{2}})} \left ( {\frac {1}{2}}+{\frac {x}{2}} \right ) ^{{\frac {1}{4\,a} \left ( 2\,a-\sqrt {4\,{a}^{2}+ \left ( -4\,b-4\,c+4\,d-4\,e \right ) a+ {b}^{2}} \right ) }}+{\it \_C2}\, \left ( -{\frac {1}{2}}+{\frac {x}{2}} \right ) ^{{\frac {1}{4\,a} \left ( 2\,a+\sqrt {4\,{a}^{2}+ \left ( -4\, b-4\,c-4\,d-4\,e \right ) a+{b}^{2}} \right ) }} \left ( {x}^{2}-1 \right ) ^{-{\frac {b}{4\,a}}} {\mbox {$_2$F$_1$}({\frac {1}{4\,a} \left ( \sqrt {4\,{a}^{2}+ \left ( -4\,b-4\,c-4\,d-4\,e \right ) a+{b}^{2}}-2\,\sqrt {{a}^{2}+ \left ( -2\,b-4\,c \right ) a+{b}^{2}}+\sqrt {4\,{a}^{2}+ \left ( -4\,b-4\,c+4\,d-4\,e \right ) a+{b}^{2}}+2\,a \right ) },{\frac {1}{4\,a} \left ( \sqrt {4\,{a}^{2}+ \left ( -4\,b-4\,c-4\,d-4\,e \right ) a+{b}^{2}}+2\,\sqrt {{a}^{2}+ \left ( -2\,b-4\,c \right ) a+{b}^{2}}+\sqrt {4\,{a}^{2}+ \left ( -4\,b-4\,c+4\,d-4\,e \right ) a+{b}^{2}}+2\,a \right ) };\,{\frac {1}{2\,a} \left ( 2\,a+\sqrt {4\,{a}^{2}+ \left ( -4\,b-4\,c+4\,d-4\,e \right ) a+{b}^{2}} \right ) };\,{\frac {1}{2}}+{\frac {x}{2}})} \left ( {\frac {1}{2}}+{\frac {x}{2}} \right ) ^{{\frac {1}{4\,a} \left ( 2\,a+\sqrt {4\,{a}^{2}+ \left ( -4\,b-4\,c+4\,d-4\,e \right ) a+ {b}^{2}} \right ) }} \right \} \]