\[ \boxed { {\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) =-{\frac { \left ( b{x}^{2}+cx+d \right ) y \left ( x \right ) }{a{x}^{2} \left ( x-1 \right ) ^{2}}}=0} \]
Mathematica: cpu = 17.230188 (sec), leaf count = 413606
Result too large for latex to process
Maple: cpu = 0.110 (sec), leaf count = 299 \[ \left \{ y \left ( x \right ) ={\it \_C1}\, \left ( x-1 \right ) ^{-{ \frac {1}{2} \left ( \sqrt {a-4\,b-4\,c-4\,d}-\sqrt {a} \right ) {\frac {1}{\sqrt {a}}}}}{x}^{{\frac {1}{2} \left ( \sqrt {a}+\sqrt {a-4\,d} \right ) {\frac {1}{\sqrt {a}}}}} {\mbox {$_2$F$_1$}(-{\frac {1}{2} \left ( \sqrt {a-4\,b-4\,c-4\,d}-\sqrt {a}-\sqrt {a-4\,d}+\sqrt {a-4\,b} \right ) {\frac {1}{\sqrt {a}}}},{\frac {1}{2} \left ( -\sqrt {a-4\,b-4\,c-4\,d}+\sqrt {a}+\sqrt {a-4\,d}+\sqrt {a-4\,b} \right ) {\frac {1}{\sqrt {a}}}};\,{1 \left ( \sqrt {a}+\sqrt {a-4\,d} \right ) {\frac {1}{\sqrt {a}}}};\,x)} +{\it \_C2}\, \left ( x-1 \right ) ^{-{\frac {1}{2} \left ( \sqrt {a-4\,b -4\,c-4\,d}-\sqrt {a} \right ) {\frac {1}{\sqrt {a}}}}}{x}^{-{\frac {1 }{2} \left ( -\sqrt {a}+\sqrt {a-4\,d} \right ) {\frac {1}{\sqrt {a}}}}} {\mbox {$_2$F$_1$}(-{\frac {1}{2} \left ( \sqrt {a-4\,b-4\,c-4\,d}-\sqrt {a}+\sqrt {a-4\,d}-\sqrt {a-4\,b} \right ) {\frac {1}{\sqrt {a}}}},-{\frac {1}{2} \left ( \sqrt {a-4\,b-4\,c-4\,d}-\sqrt {a}+\sqrt {a-4\,d}+\sqrt {a-4\,b} \right ) {\frac {1}{\sqrt {a}}}};\,{1 \left ( \sqrt {a}-\sqrt {a-4\,d} \right ) {\frac {1}{\sqrt {a}}}};\,x)} \right \} \]