\[ \boxed { x \left ( 3\,{{\rm e}^{xy \left ( x \right ) }}+2\,{{\rm e}^{-xy \left ( x \right ) }} \right ) \left ( x{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) +y \left ( x \right ) \right ) +1=0} \]
Mathematica: cpu = 0.261033 (sec), leaf count = 163 \[ \left \{\left \{y(x)\to -\frac {\cosh ^{-1}\left (\frac {1}{24} \left (-5 \sqrt {\log ^2\left (\frac {c_1}{x}\right )+24}-\log \left (\frac {c_1}{x}\right )\right )\right )}{x}\right \},\left \{y(x)\to \frac {\cosh ^{-1}\left (\frac {1}{24} \left (-5 \sqrt {\log ^2\left (\frac {c_1}{x}\right )+24}-\log \left (\frac {c_1}{x}\right )\right )\right )}{x}\right \},\left \{y(x)\to -\frac {\cosh ^{-1}\left (\frac {1}{24} \left (5 \sqrt {\log ^2\left (\frac {c_1}{x}\right )+24}-\log \left (\frac {c_1}{x}\right )\right )\right )}{x}\right \},\left \{y(x)\to \frac {\cosh ^{-1}\left (\frac {1}{24} \left (5 \sqrt {\log ^2\left (\frac {c_1}{x}\right )+24}-\log \left (\frac {c_1}{x}\right )\right )\right )}{x}\right \}\right \} \]
Maple: cpu = 0.031 (sec), leaf count = 17 \[ \left \{ y \left ( x \right ) ={\frac {1}{x}\ln \left ( -{\frac {\ln \left ( x \right ) }{5}}+{\frac {{\it \_C1}}{5}} \right ) } \right \} \]