\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) = \left ( -\ln \left ( \ln \left ( y \left ( x \right ) \right ) \right ) +\ln \left ( x \right ) \right ) ^{2}y \left ( x \right ) =0} \]
Mathematica: cpu = 0.363546 (sec), leaf count = 23 \[ \text {DSolve}\left [y'(x)=y(x) (\log (x)-\log (\log (y(x))))^2,y(x),x\right ] \]
Maple: cpu = 0.172 (sec), leaf count = 50 \[ \left \{ \int _{{\it \_b}}^{y \left ( x \right ) }\!{\frac {1}{{\it \_a} \, \left ( x \left ( \ln \left ( x \right ) \right ) ^{2}-2\,\ln \left ( x \right ) \ln \left ( \ln \left ( {\it \_a} \right ) \right ) x+ \left ( \ln \left ( \ln \left ( {\it \_a} \right ) \right ) \right ) ^{ 2}x-\ln \left ( {\it \_a} \right ) \right ) }}\,{\rm d}{\it \_a}-\ln \left ( x \right ) -{\it \_C1}=0 \right \} \]