\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac {y \left ( x \right ) }{\ln \left ( \ln \left ( y \left ( x \right ) \right ) \right ) -\ln \left ( x \right ) +1}}=0} \]
Mathematica: cpu = 3.865991 (sec), leaf count = 24 \[ \text {DSolve}\left [y'(x)=\frac {y(x)}{\log (\log (y(x)))-\log (x)+1},y(x),x\right ] \]
Maple: cpu = 0.203 (sec), leaf count = 45 \[ \left \{ \int _{{\it \_b}}^{y \left ( x \right ) }\!{\frac {-\ln \left ( \ln \left ( {\it \_a} \right ) \right ) +\ln \left ( x \right ) -1}{{ \it \_a}\, \left ( -\ln \left ( {\it \_a} \right ) \ln \left ( \ln \left ( {\it \_a} \right ) \right ) + \left ( \ln \left ( x \right ) -1 \right ) \ln \left ( {\it \_a} \right ) +x \right ) }}\,{\rm d}{\it \_a} -{\it \_C1}=0 \right \} \]