\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac {1}{x \left ( x \left ( y \left ( x \right ) \right ) ^{2}+1+x \right ) y \left ( x \right ) }}=0} \]
Mathematica: cpu = 0.071009 (sec), leaf count = 76 \[ \left \{\left \{y(x)\to -\frac {\sqrt {2 x W\left (c_1 e^{\frac {1}{2 x}-\frac {1}{2}}\right )+x-1}}{\sqrt {x}}\right \},\left \{y(x)\to \frac {\sqrt {2 x W\left (c_1 e^{\frac {1}{2 x}-\frac {1}{2}}\right )+x-1}}{\sqrt {x}}\right \}\right \} \]
Maple: cpu = 0.094 (sec), leaf count = 62 \[ \left \{ y \left ( x \right ) ={\frac {1}{x}\sqrt {x \left ( 2\,{\it lambertW} \left ( 1/2\,{\it \_C1}\,{{\rm e}^{-1/2\,{\frac {x-1}{x}}}} \right ) x+x-1 \right ) }},y \left ( x \right ) =-{\frac {1}{x}\sqrt {x \left ( 2\,{\it lambertW} \left ( 1/2\,{\it \_C1}\,{{\rm e}^{-1/2\,{ \frac {x-1}{x}}}} \right ) x+x-1 \right ) }} \right \} \]