\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac {2\,x{{\rm e}^{x}}-2\,x-\ln \left ( x \right ) -1+{x}^{4}\ln \left ( x \right ) +{x}^{4}-2\,y \left ( x \right ) {x}^{2}\ln \left ( x \right ) -2\,{x}^{2}y \left ( x \right ) + \left ( y \left ( x \right ) \right ) ^{2}\ln \left ( x \right ) + \left ( y \left ( x \right ) \right ) ^{2}}{{{\rm e}^{x}}-1}}=0} \]
Mathematica: cpu = 0 (sec), leaf count = 0 \[ \text {Hanged} \]
Maple: cpu = 4.727 (sec), leaf count = 100 \[ \left \{ y \left ( x \right ) ={1 \left ( {{x}^{2}{\it \_C1} \left ( { {\rm e}^{\int \! \left ( {\frac {{{\rm e}^{x}}}{\ln \left ( x \right ) + 1}}- \left ( \ln \left ( x \right ) +1 \right ) ^{-1} \right ) ^{-1} \,{\rm d}x}} \right ) ^{-2}}-{x}^{2}+{{\it \_C1} \left ( {{\rm e}^{\int \! \left ( {\frac {{{\rm e}^{x}}}{\ln \left ( x \right ) +1}}- \left ( \ln \left ( x \right ) +1 \right ) ^{-1} \right ) ^{-1}\,{\rm d}x}} \right ) ^{-2}}+1 \right ) \left ( {{\it \_C1} \left ( {{\rm e}^{\int \! \left ( {\frac {{{\rm e}^{x}}}{\ln \left ( x \right ) +1}}- \left ( \ln \left ( x \right ) +1 \right ) ^{-1} \right ) ^{-1}\,{\rm d}x}} \right ) ^ {-2}}-1 \right ) ^{-1}} \right \} \]