\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac {y \left ( x \right ) \left ( 1-x+y \left ( x \right ) {x}^{2}\ln \left ( x \right ) +{x}^{3}y \left ( x \right ) -x\ln \left ( x \right ) -{x}^{2} \right ) }{ \left ( x-1 \right ) x}}=0} \]
Mathematica: cpu = 0 (sec), leaf count = 0 \[ \text {Hanged} \]
Maple: cpu = 0.172 (sec), leaf count = 68 \[ \left \{ y \left ( x \right ) ={\frac {{{\rm e}^{{\it dilog} \left ( x \right ) }}}{x{{\rm e}^{x}}} \left ( \int \!-{\frac {{{\rm e}^{{\it dilog} \left ( x \right ) }} \left ( x+\ln \left ( x \right ) \right ) }{{ {\rm e}^{x}} \left ( x-1 \right ) ^{2}}}\,{\rm d}xx+{\it \_C1}\,x-\int \!-{\frac {{{\rm e}^{{\it dilog} \left ( x \right ) }} \left ( x+\ln \left ( x \right ) \right ) }{{{\rm e}^{x}} \left ( x-1 \right ) ^{2}}} \,{\rm d}x-{\it \_C1} \right ) ^{-1}} \right \} \]