\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac {-y \left ( x \right ) {{\rm e}^{x}}+xy \left ( x \right ) -{x}^{3}\ln \left ( x \right ) -{x}^{3}-x \left ( y \left ( x \right ) \right ) ^{2}\ln \left ( x \right ) -x \left ( y \left ( x \right ) \right ) ^{2}}{ \left ( -{{\rm e}^{x}}+x \right ) x}}=0} \]
Mathematica: cpu = 197.340559 (sec), leaf count = 36 \[ \left \{\left \{y(x)\to x \tan \left (\int _1^x \frac {K[1] (\log (K[1])+1)}{e^{K[1]}-K[1]} \, dK[1]+c_1\right )\right \}\right \} \]
Maple: cpu = 0.063 (sec), leaf count = 35 \[ \left \{ y \left ( x \right ) =\tan \left ( \int \!{\frac {x\ln \left ( x \right ) }{{{\rm e}^{x}}-x}}\,{\rm d}x+\int \!{\frac {x}{{{\rm e}^{x}} -x}}\,{\rm d}x+{\it \_C1} \right ) x \right \} \]