\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac {-i \left ( ix+{x}^{4}+2\,{x}^{2} \left ( y \left ( x \right ) \right ) ^{2}+ \left ( y \left ( x \right ) \right ) ^{4} \right ) }{y \left ( x \right ) }}=0} \]
Mathematica: cpu = 31.239967 (sec), leaf count = 39 \[ \text {DSolve}\left [y'(x)=-\frac {i \left (x^4+2 x^2 y(x)^2+y(x)^4+i x\right )}{y(x)},y(x),x\right ] \]
Maple: cpu = 0.312 (sec), leaf count = 243 \[ \left \{ y \left ( x \right ) ={\frac {-i\sqrt {2}}{2\,{{\rm Ai}\left (- \sqrt [3]{-8\,i}x\right )}{\it \_C1}+2\,{{\rm Bi}\left (-\sqrt [3]{-8\,i }x\right )}}\sqrt {-2\,i \left ( {{\rm Ai}\left (-\sqrt [3]{-8\,i}x \right )}{\it \_C1}+{{\rm Bi}\left (-\sqrt [3]{-8\,i}x\right )} \right ) \left ( -{\frac {{\it \_C1}\, \left ( -\sqrt {3}+i \right ) {{\rm Ai}^{( 1)}\left (-\sqrt [3]{-8\,i}x\right )}}{2}}+ \left ( {\frac {\sqrt {3}}{2} }-{\frac {i}{2}} \right ) {{\rm Bi}^{(1)}\left (-\sqrt [3]{-8\,i}x \right )}+i \left ( {{\rm Ai}\left (-\sqrt [3]{-8\,i}x\right )}{\it \_C1}+ {{\rm Bi}\left (-\sqrt [3]{-8\,i}x\right )} \right ) {x}^{2} \right ) }},y \left ( x \right ) ={\frac {i\sqrt {2}}{2\,{{\rm Ai}\left (-\sqrt [3]{-8 \,i}x\right )}{\it \_C1}+2\,{{\rm Bi}\left (-\sqrt [3]{-8\,i}x\right )}} \sqrt {-2\,i \left ( {{\rm Ai}\left (-\sqrt [3]{-8\,i}x\right )}{\it \_C1 }+{{\rm Bi}\left (-\sqrt [3]{-8\,i}x\right )} \right ) \left ( -{\frac {{ \it \_C1}\, \left ( -\sqrt {3}+i \right ) {{\rm Ai}^{(1)}\left (-\sqrt [3 ]{-8\,i}x\right )}}{2}}+ \left ( {\frac {\sqrt {3}}{2}}-{\frac {i}{2}} \right ) {{\rm Bi}^{(1)}\left (-\sqrt [3]{-8\,i}x\right )}+i \left ( { {\rm Ai}\left (-\sqrt [3]{-8\,i}x\right )}{\it \_C1}+{{\rm Bi}\left (- \sqrt [3]{-8\,i}x\right )} \right ) {x}^{2} \right ) }} \right \} \]