\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) =-{\frac {y \left ( x \right ) \left ( \tan \left ( x \right ) +\ln \left ( 2\,x \right ) x-\ln \left ( 2\,x \right ) {x}^{2}y \left ( x \right ) \right ) }{x\tan \left ( x \right ) }}=0} \]
Mathematica: cpu = 0 (sec), leaf count = 0 \[ \text {Hanged} \]
Maple: cpu = 0.281 (sec), leaf count = 69 \[ \left \{ y \left ( x \right ) ={1{{\rm e}^{\int \!-{\frac {x\ln \left ( x \right ) +x\ln \left ( 2 \right ) +\tan \left ( x \right ) }{x\tan \left ( x \right ) }}\,{\rm d}x}} \left ( \int \!-{\frac {x \left ( \ln \left ( 2 \right ) +\ln \left ( x \right ) \right ) }{\tan \left ( x \right ) }{{\rm e}^{\int \!-{\frac {x\ln \left ( x \right ) +x\ln \left ( 2 \right ) +\tan \left ( x \right ) }{x\tan \left ( x \right ) }} \,{\rm d}x}}}\,{\rm d}x+{\it \_C1} \right ) ^{-1}} \right \} \]