3.846   ODE No. 846

ddxy(x)=(x+((y(x))1+1)x+_F1(((y(x))1+1)x)x2_F1(((y(x))1+1)x)x2((y(x))1+1))1=0

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

Mathematica: cpu = 1.356672 (sec), leaf count = 362 Solve[1y(x)(x_F1(x(1K[2]+1))1xK[2]_F1(x(1K[2]+1))+x_F1(x(1K[2]+1))K[2]1x(K[1]_F1(K[1](1K[2]+1))K[2]K[1]_F1(K[1](1K[2]+1))K[2]2+_F1(K[1](1K[2]+1))K[1](K[2]_F1(K[1](1K[2]+1))+_F1(K[1](1K[2]+1)))K[2](K[2]_F1(K[1](1K[2]+1))+_F1(K[1](1K[2]+1)))(K[1](K[1]_F1(K[1](1K[2]+1))K[2]K[1]_F1(K[1](1K[2]+1))K[2]2+_F1(K[1](1K[2]+1)))1)(K[1](K[2]_F1(K[1](1K[2]+1))+_F1(K[1](1K[2]+1)))K[2])2)dK[1])dK[2]+1x(y(x)_F1((1y(x)+1)K[1])+_F1((1y(x)+1)K[1])K[1](y(x)_F1((1y(x)+1)K[1])+_F1((1y(x)+1)K[1]))y(x)1K[1])dK[1]=c1,y(x)]

Maple: cpu = 0.141 (sec), leaf count = 40 {y(x)=eRootOf(_Zxe_Ze_Z11(_F1(_a)_a1)_ad_a+_C1)1}