[next] [prev] [prev-tail] [tail] [up]
ddxy(x)=(−x+((y(x))−1+1)x+_F1(((y(x))−1+1)x)x2−_F1(((y(x))−1+1)x)x2((y(x))−1+1))−1=0
Mathematica: cpu = 1.356672 (sec), leaf count = 362 Solve[∫1y(x)(x_F1(x(1K[2]+1))−1xK[2]_F1(x(1K[2]+1))+x_F1(x(1K[2]+1))−K[2]−∫1x(−K[1]_F1′(K[1](1K[2]+1))K[2]−K[1]_F1′(K[1](1K[2]+1))K[2]2+_F1(K[1](1K[2]+1))K[1](K[2]_F1(K[1](1K[2]+1))+_F1(K[1](1K[2]+1)))−K[2]−(K[2]_F1(K[1](1K[2]+1))+_F1(K[1](1K[2]+1)))(K[1](−K[1]_F1′(K[1](1K[2]+1))K[2]−K[1]_F1′(K[1](1K[2]+1))K[2]2+_F1(K[1](1K[2]+1)))−1)(K[1](K[2]_F1(K[1](1K[2]+1))+_F1(K[1](1K[2]+1)))−K[2])2)dK[1])dK[2]+∫1x(y(x)_F1((1y(x)+1)K[1])+_F1((1y(x)+1)K[1])K[1](y(x)_F1((1y(x)+1)K[1])+_F1((1y(x)+1)K[1]))−y(x)−1K[1])dK[1]=c1,y(x)]
Maple: cpu = 0.141 (sec), leaf count = 40 {y(x)=eRootOf(−_Z−∫xe_Ze_Z−11(_F1(_a)_a−1)_ad_a+_C1)−1}
[next] [prev] [prev-tail] [front] [up]