\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) =1/5\,{\frac {-30\,{x}^{3}y \left ( x \right ) +12\,{x}^{6}+70\,{x}^{7/2}-30\,{x}^{3}-25\,y \left ( x \right ) \sqrt {x}+50\,x-25\,\sqrt {x}-25}{ \left ( -5\,y \left ( x \right ) +2\,{x}^{3}+10\,\sqrt {x}-5 \right ) x}}=0} \]
Mathematica: cpu = 0.045506 (sec), leaf count = 215 \[ \left \{\left \{y(x)\to \frac {1}{5} \left (2 x^3+10 \sqrt {x}-5\right )-\frac {\sqrt {-25 c_1 x-x \left (2 x^3+10 \sqrt {x}-5\right )^2-50 x \left (-\frac {4 x^{7/2}}{5}-\frac {2 x^6}{25}+\frac {2 x^3}{5}-2 x+2 \sqrt {x}+\log (x)\right )}}{5 \sqrt {-\frac {1}{x}} x}\right \},\left \{y(x)\to \frac {\sqrt {-25 c_1 x-x \left (2 x^3+10 \sqrt {x}-5\right )^2-50 x \left (-\frac {4 x^{7/2}}{5}-\frac {2 x^6}{25}+\frac {2 x^3}{5}-2 x+2 \sqrt {x}+\log (x)\right )}}{5 \sqrt {-\frac {1}{x}} x}+\frac {1}{5} \left (2 x^3+10 \sqrt {x}-5\right )\right \}\right \} \]
Maple: cpu = 0.047 (sec), leaf count = 49 \[ \left \{ y \left ( x \right ) ={\frac {2\,{x}^{3}}{5}}-\sqrt {{\it \_C1} +2\,\ln \left ( x \right ) }+2\,\sqrt {x}-1,y \left ( x \right ) ={\frac {2\,{x}^{3}}{5}}+\sqrt {{\it \_C1}+2\,\ln \left ( x \right ) }+2\, \sqrt {x}-1 \right \} \]