\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac {1+2\,y \left ( x \right ) }{x \left ( -2+x+x \left ( y \left ( x \right ) \right ) ^{2}+3\,x \left ( y \left ( x \right ) \right ) ^{3}+2\,xy \left ( x \right ) +2\,x \left ( y \left ( x \right ) \right ) ^{4} \right ) }}=0} \]
Mathematica: cpu = 0.345044 (sec), leaf count = 53 \[ \text {Solve}\left [\frac {1}{192} \left (-16 y(x)^3-12 y(x)^2+12 y(x)-54 \log (4 y(x)+2)+7\right )-\frac {1}{2 x (2 y(x)+1)}=c_1,y(x)\right ] \]
Maple: cpu = 0.187 (sec), leaf count = 50 \[ \left \{ y \left ( x \right ) ={\frac {{{\rm e}^{{\it RootOf} \left ( 2\, x \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{4}-3\,x \left ( {{\rm e}^{{ \it \_Z}}} \right ) ^{3}-6\,x \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{2} +48\,{\it \_C1}\,{{\rm e}^{{\it \_Z}}}x+54\,{{\rm e}^{{\it \_Z}}}{\it \_Z}\,x+7\,x{{\rm e}^{{\it \_Z}}}+96 \right ) }}}{2}}-{\frac {1}{2}} \right \} \]