\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac {y \left ( x \right ) \left ( x\ln \left ( x \right ) +\ln \left ( x \right ) +\ln \left ( y \left ( x \right ) \right ) x+\ln \left ( y \left ( x \right ) \right ) -x-1+x \left ( \ln \left ( x \right ) \right ) ^{2}+2\,x\ln \left ( y \left ( x \right ) \right ) \ln \left ( x \right ) +x \left ( \ln \left ( y \left ( x \right ) \right ) \right ) ^{2} \right ) }{x \left ( 1+x \right ) }}=0} \]
Mathematica: cpu = 1.226656 (sec), leaf count = 60 \[ \text {DSolve}\left [y'(x)=\frac {y(x) \left (x \log ^2(y(x))+2 x \log (x) \log (y(x))+x \log (y(x))+\log (y(x))-x+x \log ^2(x)+x \log (x)+\log (x)-1\right )}{x (x+1)},y(x),x\right ] \]
Maple: cpu = 0.172 (sec), leaf count = 38 \[ \left \{ y \left ( x \right ) ={{\rm e}^{-{\frac {\ln \left ( 1+x \right ) \ln \left ( x \right ) +{\it \_C1}\,\ln \left ( x \right ) -x \ln \left ( x \right ) -x}{\ln \left ( 1+x \right ) +{\it \_C1}-x}}}} \right \} \]