\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac {y \left ( x \right ) \left ( \ln \left ( y \left ( x \right ) \right ) x+\ln \left ( y \left ( x \right ) \right ) -x-1+x\ln \left ( x \right ) +\ln \left ( x \right ) +{x}^{4} \left ( \ln \left ( x \right ) \right ) ^{2}+2\,{x}^{4}\ln \left ( y \left ( x \right ) \right ) \ln \left ( x \right ) +{x}^{4} \left ( \ln \left ( y \left ( x \right ) \right ) \right ) ^{2} \right ) }{x \left ( 1+x \right ) }}=0} \]
Mathematica: cpu = 2.069763 (sec), leaf count = 66 \[ \text {DSolve}\left [y'(x)=\frac {y(x) \left (x^4 \log ^2(y(x))+2 x^4 \log (x) \log (y(x))+x^4 \log ^2(x)+x \log (y(x))+\log (y(x))-x+x \log (x)+\log (x)-1\right )}{x (x+1)},y(x),x\right ] \]
Maple: cpu = 0.219 (sec), leaf count = 80 \[ \left \{ y \left ( x \right ) ={{\rm e}^{-{\frac {3\,{x}^{4}\ln \left ( x \right ) -4\,{x}^{3}\ln \left ( x \right ) +6\,{x}^{2}\ln \left ( x \right ) +12\,\ln \left ( 1+x \right ) \ln \left ( x \right ) -12\,{\it \_C1}\,\ln \left ( x \right ) -12\,x\ln \left ( x \right ) +12\,x}{3\,{x }^{4}-4\,{x}^{3}+6\,{x}^{2}+12\,\ln \left ( 1+x \right ) -12\,{\it \_C1 }-12\,x}}}} \right \} \]