\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) =- \left ( -{\frac {\ln \left ( y \left ( x \right ) \right ) }{x}}+{\frac {\ln \left ( y \left ( x \right ) \right ) }{x\ln \left ( x \right ) }}-{\it \_F1} \left ( x \right ) \right ) y \left ( x \right ) =0} \]
Mathematica: cpu = 2.718845 (sec), leaf count = 52 \[ \text {Solve}\left [\text {ConditionalExpression}\left [\int _1^x \left (\frac {\log (y(x))-\log (y(x)) \log (K[1])}{K[1]^2}-\frac {\log (K[1]) \text {$\_$F1}(K[1])}{K[1]}\right ) \, dK[1]=c_1,\Re (x)>0\lor x\notin \mathbb {R}\right ],y(x)\right ] \]
Maple: cpu = 0.093 (sec), leaf count = 30 \[ \left \{ y \left ( x \right ) ={{\rm e}^{{\frac {x{\it \_C1}}{\ln \left ( x \right ) }}}}{{\rm e}^{{\frac {x}{\ln \left ( x \right ) } \int \!{\frac {{\it \_F1} \left ( x \right ) \ln \left ( x \right ) }{x}} \,{\rm d}x}}} \right \} \]