\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac { \left ( y \left ( x \right ) \right ) ^{2}}{ \left ( y \left ( x \right ) \right ) ^{2}+ \left ( y \left ( x \right ) \right ) ^{3/2}+\sqrt {y \left ( x \right ) }{x}^{2}-2\, \left ( y \left ( x \right ) \right ) ^{3/2}x+ \left ( y \left ( x \right ) \right ) ^{5/2}+{x}^{3}-3\,{x}^{2}y \left ( x \right ) +3\,x \left ( y \left ( x \right ) \right ) ^{2}- \left ( y \left ( x \right ) \right ) ^{3}}}=0} \]
Mathematica: cpu = 0 (sec), leaf count = 0 \[ \text {Hanged} \]
Maple: cpu = 0.110 (sec), leaf count = 47 \[ \left \{ {\frac {\ln \left ( y \left ( x \right ) \right ) }{2}}-\int ^{ {x{\frac {1}{\sqrt {y \left ( x \right ) }}}}-\sqrt {y \left ( x \right ) }}\! \left ( 2\,{{\it \_a}}^{3}+2\,{{\it \_a}}^{2}-{\it \_a}+2 \right ) ^{-1}{d{\it \_a}}-{\it \_C1}=0 \right \} \]