[next] [prev] [prev-tail] [tail] [up]
ddxy(x)=−8x(a−1)(a+1)8−8y(x)+2x4+3x4(y(x))2+4x2(y(x))2+2(y(x))4+3a4(y(x))4x2−3a6(y(x))2x4+9(y(x))2a4x4−9(y(x))2a2x4−a2(y(x))6+a8x6−4a6x6+6a4x6−2a2(y(x))4−2a6x4+6a4x4−6a2x4−4a2x6−6(y(x))4a2x2+4a4(y(x))2x2−8(y(x))2a2x2+3x2(y(x))4+x6+(y(x))6−8a2=0
Mathematica: cpu = 4.810111 (sec), leaf count = 264 Solve[y(x)(a−1)(a+1)−8RootSum[−#13a6+3#13a4−3#13a2+#13+3#12a4y(x)2+2#12a4−6#12a2y(x)2−4#12a2+3#12y(x)2+2#12−3#1a2y(x)4−4#1a2y(x)2+3#1y(x)4+4#1y(x)2+y(x)6+2y(x)4+8&,log(x2−#1)3#12a4−6#12a2+3#12−6#1a2y(x)2−4#1a2+6#1y(x)2+4#1+3y(x)4+4y(x)2&](a−1)(a+1)(2−2a2)=c1,y(x)]
Maple: cpu = 2.012 (sec), leaf count = 80 {y(x)(a−1)(a+1)+41a4−2a2+1∑_R=RootOf(_Z3+2_Z2+8)ln(−a2x2+x2+(y(x))2−_R)3_R2+4_R−_C1=0}
[next] [prev] [prev-tail] [front] [up]