\[ y'(x)^2-2 y(x) y'(x)-2 x=0 \] ✓ Mathematica : cpu = 0.619687 (sec), leaf count = 53
\[\text {Solve}\left [\left \{x=\frac {c_1 \text {K$\$$1180705}}{\sqrt {\text {K$\$$1180705}^2+1}}+\frac {\text {K$\$$1180705} \sinh ^{-1}(\text {K$\$$1180705})}{2 \sqrt {\text {K$\$$1180705}^2+1}},y(x)=\frac {\text {K$\$$1180705}}{2}-\frac {x}{\text {K$\$$1180705}}\right \},\{y(x),\text {K$\$$1180705}\}\right ]\]
✓ Maple : cpu = 0.08 (sec), leaf count = 217
\[ \left \{ {{\it \_C1} \left ( -2\,y \left ( x \right ) +2\,\sqrt { \left ( y \left ( x \right ) \right ) ^{2}+2\,x} \right ) {\frac {1}{\sqrt {2\, \left ( y \left ( x \right ) \right ) ^{2}+2\,x-2\,y \left ( x \right ) \sqrt { \left ( y \left ( x \right ) \right ) ^{2}+2\,x}+1}}}}+x-{\frac {1}{2} \left ( -y \left ( x \right ) +\sqrt { \left ( y \left ( x \right ) \right ) ^{2}+2\,x} \right ) {\it Arcsinh} \left ( -y \left ( x \right ) +\sqrt { \left ( y \left ( x \right ) \right ) ^{2}+2\,x} \right ) {\frac {1}{\sqrt {2\, \left ( y \left ( x \right ) \right ) ^{2}+2\,x-2\,y \left ( x \right ) \sqrt { \left ( y \left ( x \right ) \right ) ^{2}+2\,x}+1}}}}=0,{{\it \_C1} \left ( 2\,y \left ( x \right ) +2\,\sqrt { \left ( y \left ( x \right ) \right ) ^{2}+2\,x} \right ) {\frac {1}{\sqrt {2\, \left ( y \left ( x \right ) \right ) ^{2}+2\,x+2\,y \left ( x \right ) \sqrt { \left ( y \left ( x \right ) \right ) ^{2}+2\,x}+1}}}}+x-{\frac {1}{2} \left ( y \left ( x \right ) +\sqrt { \left ( y \left ( x \right ) \right ) ^{2}+2\,x} \right ) {\it Arcsinh} \left ( y \left ( x \right ) +\sqrt { \left ( y \left ( x \right ) \right ) ^{2}+2\,x} \right ) {\frac {1}{\sqrt {2\, \left ( y \left ( x \right ) \right ) ^{2}+2\,x+2\,y \left ( x \right ) \sqrt { \left ( y \left ( x \right ) \right ) ^{2}+2\,x}+1}}}}=0 \right \} \]