2.722   ODE No. 722

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

y(x)=y(x)3x(y(x)+2y(x)log(x)1) Mathematica : cpu = 47.4084 (sec), leaf count = 493

Solve[23((2)2/3(12log(x))2(1(2log(x)1)3)2/3(y(x)(54log(x))+2)223(y(x)(2log(x)1)1))(y(x)(4log(x)5)2231(2log(x)1)33(2log(x)1)(y(x)(2log(x)1)1)+(2)2/3)(log(2((2)2/3(12log(x))2(1(2log(x)1)3)2/3(y(x)(54log(x))+2)223(y(x)(2log(x)1)1)))(13(1(2log(x)1)3)2/3(12log(x))2(y(x)(4log(x)5)2)y(x)(4log(x)2)2+1)log(y(x)(4log(x)5)2231(2log(x)1)33(2log(x)1)(y(x)(2log(x)1)1)+(2)2/3)(13(1(2log(x)1)3)2/3(12log(x))2(y(x)(4log(x)5)2)y(x)(4log(x)2)2+1)+3)9((y(x)(4log(x)5)2)38(y(x)(2log(x)1)1)3+313(y(x)(4log(x)5)2)2(12log(x))4(1(2log(x)1)3)4/3(y(x)(2log(x)1)1)+2)=c1+4922/3log(x)(1(2log(x)1)3)2/3(12log(x))2,y(x)]

Maple : cpu = 0.295 (sec), leaf count = 96

{y(x)=1eRootOf(e_Zln(e_Z+22x4)+3e_Z_C1+_Ze_Z+2)(2eRootOf(e_Zln(1/2e_Z+2x4)+3e_Z_C1+_Ze_Z+2)ln(x)eRootOf(e_Zln(e_Z+22x4)+3e_Z_C1+_Ze_Z+2)+1)1}