\[ y'(x)=\frac {2 a}{32 a^3 x^2-16 a^2 x y(x)^2+2 a y(x)^4+y(x)} \] ✓ Mathematica : cpu = 0.0657644 (sec), leaf count = 663
\[\left \{\left \{y(x)\to -\frac {\sqrt [3]{-1024 a^6 c_1^3+9216 a^5 c_1 x-432 a^2+\sqrt {4 \left (-64 a^4 c_1^2-192 a^3 x\right ){}^3+\left (-1024 a^6 c_1^3+9216 a^5 c_1 x-432 a^2\right ){}^2}}}{12 \sqrt [3]{2} a}+\frac {-64 a^4 c_1^2-192 a^3 x}{6\ 2^{2/3} a \sqrt [3]{-1024 a^6 c_1^3+9216 a^5 c_1 x-432 a^2+\sqrt {4 \left (-64 a^4 c_1^2-192 a^3 x\right ){}^3+\left (-1024 a^6 c_1^3+9216 a^5 c_1 x-432 a^2\right ){}^2}}}+\frac {2 a c_1}{3}\right \},\left \{y(x)\to \frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{-1024 a^6 c_1^3+9216 a^5 c_1 x-432 a^2+\sqrt {4 \left (-64 a^4 c_1^2-192 a^3 x\right ){}^3+\left (-1024 a^6 c_1^3+9216 a^5 c_1 x-432 a^2\right ){}^2}}}{24 \sqrt [3]{2} a}-\frac {\left (1+i \sqrt {3}\right ) \left (-64 a^4 c_1^2-192 a^3 x\right )}{12\ 2^{2/3} a \sqrt [3]{-1024 a^6 c_1^3+9216 a^5 c_1 x-432 a^2+\sqrt {4 \left (-64 a^4 c_1^2-192 a^3 x\right ){}^3+\left (-1024 a^6 c_1^3+9216 a^5 c_1 x-432 a^2\right ){}^2}}}+\frac {2 a c_1}{3}\right \},\left \{y(x)\to \frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{-1024 a^6 c_1^3+9216 a^5 c_1 x-432 a^2+\sqrt {4 \left (-64 a^4 c_1^2-192 a^3 x\right ){}^3+\left (-1024 a^6 c_1^3+9216 a^5 c_1 x-432 a^2\right ){}^2}}}{24 \sqrt [3]{2} a}-\frac {\left (1-i \sqrt {3}\right ) \left (-64 a^4 c_1^2-192 a^3 x\right )}{12\ 2^{2/3} a \sqrt [3]{-1024 a^6 c_1^3+9216 a^5 c_1 x-432 a^2+\sqrt {4 \left (-64 a^4 c_1^2-192 a^3 x\right ){}^3+\left (-1024 a^6 c_1^3+9216 a^5 c_1 x-432 a^2\right ){}^2}}}+\frac {2 a c_1}{3}\right \}\right \}\]
✓ Maple : cpu = 0.074 (sec), leaf count = 864
\[ \left \{ y \left ( x \right ) ={\frac {1}{6\,a}\sqrt [3]{ \left ( 64\,{{\it \_C1}}^{3}{a}^{4}-576\,{\it \_C1}\,{a}^{3}x+3\,\sqrt {-12288\,{{\it \_C1}}^{4}{a}^{7}x+24576\,{{\it \_C1}}^{2}{a}^{6}{x}^{2}-12288\,{a}^{5}{x}^{3}+384\,{{\it \_C1}}^{3}{a}^{4}-3456\,{\it \_C1}\,{a}^{3}x+81}+27 \right ) {a}^{2}}}-6\,{\frac { \left ( -4/3\,ax-4/9\,{{\it \_C1}}^{2}{a}^{2} \right ) a}{\sqrt [3]{ \left ( 64\,{{\it \_C1}}^{3}{a}^{4}-576\,{\it \_C1}\,{a}^{3}x+3\,\sqrt {-12288\,{{\it \_C1}}^{4}{a}^{7}x+24576\,{{\it \_C1}}^{2}{a}^{6}{x}^{2}-12288\,{a}^{5}{x}^{3}+384\,{{\it \_C1}}^{3}{a}^{4}-3456\,{\it \_C1}\,{a}^{3}x+81}+27 \right ) {a}^{2}}}}+{\frac {2\,{\it \_C1}\,a}{3}},y \left ( x \right ) =-{\frac {1}{12\,a}\sqrt [3]{ \left ( 64\,{{\it \_C1}}^{3}{a}^{4}-576\,{\it \_C1}\,{a}^{3}x+3\,\sqrt {-12288\,{{\it \_C1}}^{4}{a}^{7}x+24576\,{{\it \_C1}}^{2}{a}^{6}{x}^{2}-12288\,{a}^{5}{x}^{3}+384\,{{\it \_C1}}^{3}{a}^{4}-3456\,{\it \_C1}\,{a}^{3}x+81}+27 \right ) {a}^{2}}}+3\,{\frac { \left ( -4/3\,ax-4/9\,{{\it \_C1}}^{2}{a}^{2} \right ) a}{\sqrt [3]{ \left ( 64\,{{\it \_C1}}^{3}{a}^{4}-576\,{\it \_C1}\,{a}^{3}x+3\,\sqrt {-12288\,{{\it \_C1}}^{4}{a}^{7}x+24576\,{{\it \_C1}}^{2}{a}^{6}{x}^{2}-12288\,{a}^{5}{x}^{3}+384\,{{\it \_C1}}^{3}{a}^{4}-3456\,{\it \_C1}\,{a}^{3}x+81}+27 \right ) {a}^{2}}}}+{\frac {2\,{\it \_C1}\,a}{3}}-{\frac {i}{2}}\sqrt {3} \left ( {\frac {1}{6\,a}\sqrt [3]{ \left ( 64\,{{\it \_C1}}^{3}{a}^{4}-576\,{\it \_C1}\,{a}^{3}x+3\,\sqrt {-12288\,{{\it \_C1}}^{4}{a}^{7}x+24576\,{{\it \_C1}}^{2}{a}^{6}{x}^{2}-12288\,{a}^{5}{x}^{3}+384\,{{\it \_C1}}^{3}{a}^{4}-3456\,{\it \_C1}\,{a}^{3}x+81}+27 \right ) {a}^{2}}}+6\,{\frac { \left ( -4/3\,ax-4/9\,{{\it \_C1}}^{2}{a}^{2} \right ) a}{\sqrt [3]{ \left ( 64\,{{\it \_C1}}^{3}{a}^{4}-576\,{\it \_C1}\,{a}^{3}x+3\,\sqrt {-12288\,{{\it \_C1}}^{4}{a}^{7}x+24576\,{{\it \_C1}}^{2}{a}^{6}{x}^{2}-12288\,{a}^{5}{x}^{3}+384\,{{\it \_C1}}^{3}{a}^{4}-3456\,{\it \_C1}\,{a}^{3}x+81}+27 \right ) {a}^{2}}}} \right ) ,y \left ( x \right ) =-{\frac {1}{12\,a}\sqrt [3]{ \left ( 64\,{{\it \_C1}}^{3}{a}^{4}-576\,{\it \_C1}\,{a}^{3}x+3\,\sqrt {-12288\,{{\it \_C1}}^{4}{a}^{7}x+24576\,{{\it \_C1}}^{2}{a}^{6}{x}^{2}-12288\,{a}^{5}{x}^{3}+384\,{{\it \_C1}}^{3}{a}^{4}-3456\,{\it \_C1}\,{a}^{3}x+81}+27 \right ) {a}^{2}}}+3\,{\frac { \left ( -4/3\,ax-4/9\,{{\it \_C1}}^{2}{a}^{2} \right ) a}{\sqrt [3]{ \left ( 64\,{{\it \_C1}}^{3}{a}^{4}-576\,{\it \_C1}\,{a}^{3}x+3\,\sqrt {-12288\,{{\it \_C1}}^{4}{a}^{7}x+24576\,{{\it \_C1}}^{2}{a}^{6}{x}^{2}-12288\,{a}^{5}{x}^{3}+384\,{{\it \_C1}}^{3}{a}^{4}-3456\,{\it \_C1}\,{a}^{3}x+81}+27 \right ) {a}^{2}}}}+{\frac {2\,{\it \_C1}\,a}{3}}+{\frac {i}{2}}\sqrt {3} \left ( {\frac {1}{6\,a}\sqrt [3]{ \left ( 64\,{{\it \_C1}}^{3}{a}^{4}-576\,{\it \_C1}\,{a}^{3}x+3\,\sqrt {-12288\,{{\it \_C1}}^{4}{a}^{7}x+24576\,{{\it \_C1}}^{2}{a}^{6}{x}^{2}-12288\,{a}^{5}{x}^{3}+384\,{{\it \_C1}}^{3}{a}^{4}-3456\,{\it \_C1}\,{a}^{3}x+81}+27 \right ) {a}^{2}}}+6\,{\frac { \left ( -4/3\,ax-4/9\,{{\it \_C1}}^{2}{a}^{2} \right ) a}{\sqrt [3]{ \left ( 64\,{{\it \_C1}}^{3}{a}^{4}-576\,{\it \_C1}\,{a}^{3}x+3\,\sqrt {-12288\,{{\it \_C1}}^{4}{a}^{7}x+24576\,{{\it \_C1}}^{2}{a}^{6}{x}^{2}-12288\,{a}^{5}{x}^{3}+384\,{{\it \_C1}}^{3}{a}^{4}-3456\,{\it \_C1}\,{a}^{3}x+81}+27 \right ) {a}^{2}}}} \right ) \right \} \]