2.724   ODE No. 724

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

y(x)=y(x)3x(y(x)+y(x)log(x)1) Mathematica : cpu = 55.8922 (sec), leaf count = 422

Solve[23(1y(x)(log(x)4)231(log(x)1)33(log(x)1)(y(x)(log(x)1)1)+(2)2/3)(22/3(y(x)(log(x)4)1)1(log(x)1)33(log(x)1)(y(x)(log(x)1)1)+(2)2/3)(log(2(1y(x)(log(x)4)231(log(x)1)33(log(x)1)(y(x)(log(x)1)1)+(2)2/3))(13(1y(x)(log(x)4))1(log(x)1)33(log(x)1)(y(x)(log(x)1)1)+1)log(22/3(y(x)(log(x)4)1)1(log(x)1)33(log(x)1)(y(x)(log(x)1)1)+(2)2/3)(13(1y(x)(log(x)4))1(log(x)1)33(log(x)1)(y(x)(log(x)1)1)+1)+3)9((y(x)(log(x)4)1)3(y(x)(log(x)1)1)3+313(y(x)(log(x)4)1)(1(log(x)1)3)4/3(log(x)1)4(y(x)(log(x)1)1)+2)=c1+1922/3(1(log(x)1)3)2/3log(x)(log(x)1)2,y(x)]

Maple : cpu = 0.057 (sec), leaf count = 20

{y(x)=(lambertW(_C1e2x)ln(x)+2)1}