[next] [prev] [prev-tail] [tail] [up]
y′(x)=sech(1x−1)(x5+x4−2x3y(x)−2x2y(x)+2x2cosh(1x−1)+xy(x)2+y(x)2−x−2xcosh(1x−1)−1)x−1 ✗ Mathematica : cpu = 300.004 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 18.086 (sec), leaf count = 634
{y(x)=1(x2(e_C1(e(x−1)−1)2+1e2(x−1)−1)4(e_C1(e(x−1)−1)2+1)4(e1(e(x−1)−1)2+1∫(e(x−1)−1x1+x+xe(x−1)−1(1+x)−e(x−1)−11+x−1e(x−1)−1(1+x))−1dxe2(x−1)−1)−4(e1(e(x−1)−1)2+1∫(e(x−1)−1x1+x+xe(x−1)−1(1+x)−e(x−1)−11+x−1e(x−1)−1(1+x))−1dx)−4−x2+1(e_C1(e(x−1)−1)2+1e2(x−1)−1)4(e_C1(e(x−1)−1)2+1)4(e1(e(x−1)−1)2+1∫(e(x−1)−1x1+x+xe(x−1)−1(1+x)−e(x−1)−11+x−1e(x−1)−1(1+x))−1dxe2(x−1)−1)−4(e1(e(x−1)−1)2+1∫(e(x−1)−1x1+x+xe(x−1)−1(1+x)−e(x−1)−11+x−1e(x−1)−1(1+x))−1dx)−4+1)(−1+1(e_C1(e(x−1)−1)2+1e2(x−1)−1)4(e_C1(e(x−1)−1)2+1)4(e1(e(x−1)−1)2+1∫(e(x−1)−1x1+x+xe(x−1)−1(1+x)−e(x−1)−11+x−1e(x−1)−1(1+x))−1dxe2(x−1)−1)−4(e1(e(x−1)−1)2+1∫(e(x−1)−1x1+x+xe(x−1)−1(1+x)−e(x−1)−11+x−1e(x−1)−1(1+x))−1dx)−4)−1}
[next] [prev] [prev-tail] [front] [up]