\[ y'(x)=\frac {y(x) \text {sech}\left (\frac {1}{x+1}\right ) \left (x^3 y(x)+x^2 y(x)-x^2-x-x \cosh \left (\frac {1}{x+1}\right )+\cosh \left (\frac {1}{x+1}\right )\right )}{(x-1) x} \] ✗ Mathematica : cpu = 299.998 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 0.613 (sec), leaf count = 114
\[ \left \{ y \left ( x \right ) ={1{{\rm e}^{\int \!-{\frac {\cosh \left ( \left ( 1+x \right ) ^{-1} \right ) x+{x}^{2}-\cosh \left ( \left ( 1+x \right ) ^{-1} \right ) +x}{x \left ( x-1 \right ) \cosh \left ( \left ( 1+x \right ) ^{-1} \right ) }}\,{\rm d}x}} \left ( \int \!-{\frac {x \left ( 1+x \right ) }{ \left ( x-1 \right ) \cosh \left ( \left ( 1+x \right ) ^{-1} \right ) }{{\rm e}^{\int \!-{\frac {\cosh \left ( \left ( 1+x \right ) ^{-1} \right ) x+{x}^{2}-\cosh \left ( \left ( 1+x \right ) ^{-1} \right ) +x}{x \left ( x-1 \right ) \cosh \left ( \left ( 1+x \right ) ^{-1} \right ) }}\,{\rm d}x}}}\,{\rm d}x+{\it \_C1} \right ) ^{-1}} \right \} \]