\[ y'(x)=\frac {2 x^2 y(x) \log ^2(x)+x^2 y(x)^2 \log (x)+x^2 \log ^3(x)+y(x)}{x \log (x)} \] ✓ Mathematica : cpu = 0.120646 (sec), leaf count = 186
\[\left \{\left \{y(x)\to -\frac {c_1 e^{\frac {1}{4} x^2 (2 \log (x)-1)} \left (\frac {x}{2}+\frac {1}{2} x (2 \log (x)-1)\right )+\frac {1}{4} x^2 e^{\frac {1}{4} x^2 (2 \log (x)-1)} (2 \log (x)-1) \left (\frac {x}{2}+\frac {1}{2} x (2 \log (x)-1)\right )+\frac {1}{2} x e^{\frac {1}{4} x^2 (2 \log (x)-1)}+\frac {1}{2} x e^{\frac {1}{4} x^2 (2 \log (x)-1)} (2 \log (x)-1)}{x \left (c_1 e^{\frac {1}{4} x^2 (2 \log (x)-1)}+\frac {1}{4} x^2 e^{\frac {1}{4} x^2 (2 \log (x)-1)} (2 \log (x)-1)\right )}\right \}\right \}\]
✓ Maple : cpu = 0.029 (sec), leaf count = 43
\[ \left \{ y \left ( x \right ) =-{\frac {\ln \left ( x \right ) \left ( 2\,{x}^{2}\ln \left ( x \right ) -{x}^{2}+2\,{\it \_C1}+4 \right ) }{2\,{x}^{2}\ln \left ( x \right ) -{x}^{2}+2\,{\it \_C1}}} \right \} \]