\[ y'(x)=\frac {2 x^3 y(x) \log ^2(x)+x^3 y(x)^2 \log (x)+x^3 \log ^3(x)+y(x)}{x \log (x)} \] ✓ Mathematica : cpu = 0.125041 (sec), leaf count = 198
\[\left \{\left \{y(x)\to -\frac {c_1 e^{\frac {1}{9} x^3 (3 \log (x)-1)} \left (\frac {x^2}{3}+\frac {1}{3} x^2 (3 \log (x)-1)\right )+\frac {1}{9} x^3 e^{\frac {1}{9} x^3 (3 \log (x)-1)} (3 \log (x)-1) \left (\frac {x^2}{3}+\frac {1}{3} x^2 (3 \log (x)-1)\right )+\frac {1}{3} x^2 e^{\frac {1}{9} x^3 (3 \log (x)-1)}+\frac {1}{3} x^2 e^{\frac {1}{9} x^3 (3 \log (x)-1)} (3 \log (x)-1)}{x^2 \left (c_1 e^{\frac {1}{9} x^3 (3 \log (x)-1)}+\frac {1}{9} x^3 e^{\frac {1}{9} x^3 (3 \log (x)-1)} (3 \log (x)-1)\right )}\right \}\right \}\]
✓ Maple : cpu = 0.028 (sec), leaf count = 43
\[ \left \{ y \left ( x \right ) =-{\frac {\ln \left ( x \right ) \left ( 6\,{x}^{3}\ln \left ( x \right ) -2\,{x}^{3}+9\,{\it \_C1}+18 \right ) }{6\,{x}^{3}\ln \left ( x \right ) -2\,{x}^{3}+9\,{\it \_C1}}} \right \} \]