2.1329   ODE No. 1329

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

y(x)=y(x)(x(a(δ+gamma1)+α+βδ+1)+agamma1+x2(α+β+1))(x1)x(xa)y(x)(αβxq)(x1)x(xa) Mathematica : cpu = 6.43599 (sec), leaf count = 0 , DifferentialRoot result

\left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{(\unicode {f817} \alpha \beta -q) \unicode {f818}(\unicode {f817})+\left (\alpha \unicode {f817}^2+\beta \unicode {f817}^2+\unicode {f817}^2-\alpha \unicode {f817}-\beta \unicode {f817}-a \delta \unicode {f817}+\delta \unicode {f817}-a \text {gamma1} \unicode {f817}-\unicode {f817}+a \text {gamma1}\right ) \unicode {f818}'(\unicode {f817})-(\unicode {f817}-1) \unicode {f817} (a-\unicode {f817}) \unicode {f818}''(\unicode {f817})=0,\unicode {f818}(2)=c_1,\unicode {f818}'(2)=c_2\right \}\right )(x)\right \}\right \}

Maple : cpu = 0.365 (sec), leaf count = 64

{y(x)=_C1HeunG(a,q,α,β,γ1,δ,x)+_C2x1γ1HeunG(a,q(1+γ1)(δ(a1)+α+βγ1+1),β+1γ1,α+1γ1,γ1+2,δ,x)}