2.1330   ODE No. 1330

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

y(x)=y(x)(Ax2+Bx+C)(xa)(xb)(xc)(DDx+e)y(x)(xa)(xb)(xc) Mathematica : cpu = 178.434 (sec), leaf count = 0 , DifferentialRoot result

\left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{(\unicode {f817} \text {DD}+e) \unicode {f818}(\unicode {f817})+\left (A \unicode {f817}^2+B \unicode {f817}+C\right ) \unicode {f818}'(\unicode {f817})-(a-\unicode {f817}) (b-\unicode {f817}) (c-\unicode {f817}) \unicode {f818}''(\unicode {f817})=0,\unicode {f818}(0)=c_1,\unicode {f818}'(0)=c_2\right \}\right )(x)\right \}\right \}

Maple : cpu = 1.19 (sec), leaf count = 1147

{y(x)=_C1HeunG(acab,DDa+Eab,A212+12A22A4DD+1,1((A(bc)aAbcBcC)A22A4DD+1(A2A4DD)(bc)a+c(A2A4DD)b+(Bc+C)A+4c2DDBcC)(2(bc)(ac)A22A4DD+1+(2b+2c)a+2Ac2+2Bc+2bc2c2+2C)1,Aa2+Ba+C(ab)(ac),Ab2BbC(ab)(bc),axab)+_C2HeunG(acab,1(ab)3(ac)2((ab)(a(a2b)ABbC+(DDaE)b+a2DD+Ea)c2+(a3(a2b)A2+(a(a3b)B2Cba(ab)(a3b))aAB2ab(a+b)(Ca(ab))BC2+(3a24ab+b2)C2a(ab)2(DDa+E))c+A2a4b+((a+b)Bab+b2+2C)a3A+B2a3+((3a2ab)Ca3(ab))B+(2ab)C22(ab)(ab/2)aC+a2(ab)2(DDa+E)),1(2a2c)(ab)((ac)(ab)A22A4DD+1+(A+1)a2+((bc)A2Bbc)a+Abc+bc2C),1(2a2c)(ab)((ac)((bc)(A2)a2+(2c2Bc+(A+2)b2+2Bb+C)a+2bc2+((A2)b2Bb2C)c+Cb)A22A4DD+1(A23A4DD+2)(bc)a3+((3A2+5A+8DD4)c2+((A23A4DD+2)bB(1+A))c+(A2A4DD+2)b2+2BbC(A1))a2+((2A4DD+2)c3+((2A4DD+2)b3AB+B)c2+((2A2+2A+8DD4)b2B(A+3)bAC2B23C)cC((A1)b+2B))a+2(A+2DD1)bc3+((A2A4DD+2)b2+B(1+A)b2C(A1))c2+C((A1)b2B)c2C2)((bc)(ac)A22A4DD+1+(A1)c2+(B+a+b)cab+C)1,(A+2)a2+(B2b2c)a+2bcC(ab)(ac),Ab2BbC(ab)(bc),axab)(xa)(A+1)a2+(Bbc)a+bcC(ab)(ac)}