2.77   ODE No. 77

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

y(x)cos(ay(x)+bx)=0 Mathematica : cpu = 0.319637 (sec), leaf count = 58

{{y(x)2tan1((a+b)tanh(12a2b2(xc1))a2b2)bxa}}

Maple : cpu = 0.086 (sec), leaf count = 54

{y(x)=1a(bx+2arctan(tanh(1/2a2b2(x_C1))a2b2ab))}

Hand solution

y=cos(ay+bx)

This is separable after transformation of u=ay+bx, hence u=ay+b or y=1a(ub). Therefore the above becomes

1a(ub)=cos(u)u=acosu+bduacosu+b=dx

This is the same as Kamke 76 (the problem before this), which we solved using half angle tan transformation, and the answer is

u=2arctan(a+bb2a2tan(12b2a2(x+C)))

Since u=ay+bx then y=ubxa, hence

y=1a(2arctan(a+bb2a2tan(12b2a2(x+C)))bx)

Verification

ode:=diff(y(x),x)=cos(a*y(x)+b*x); 
my_sol:=(1/a)*(2*arctan( (a+b)/sqrt(b^2-a^2) * tan(1/2*sqrt(b^2-a^2)*(x+_C1)))-b*x); 
odetest(y(x)=my_sol,ode); 
0