2.78   ODE No. 78

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

asin(αy(x)+βx)+b+y(x)=0 Mathematica : cpu = 0.921878 (sec), leaf count = 86

{{y(x)2tan1((βαb)2a2α2tan(12(c1x)(βαb)2a2α2)aααbβ)βxα}}

Maple : cpu = 2.266 (sec), leaf count = 89

{y(x)=1α(βx+2arctan(tan(1/2(a2+b2)α22αbβ+β2(x_C1))(a2+b2)α22αbβ+β2aαbαβ))}

Hand solution

y=asin(αy+βx)b

This is separable after transformation of u=αy+βx, hence u=αy+β or y=1α(uβ). Therefore the above becomes1α(uβ)=asin(u)bu=α(asin(u)+b)+β(1)duβα(asin(u)+b)=dx

Using half angle tan transformation where tan(u2)=t,sin(u)=2tt2+1,du=21+t2dt thenduβα(asin(u)+b)=21+t2dtβα(a2tt2+1+b)=2dtβ(t2+1)α(a2t+b(t2+1))=2dttβ2+β(αa2t+t2αb+αb)=2dt(βαb)(tβ2αa2tt2αb(βαb)+1)=2(βαb)dttβ2αa2tt2αb(βαb)+1=2(βαb)(αbβ)α2a2(α2b2+β22αbβ)tanh1((t+aαbαβ)(bαβ)α2a2(α2b2+β22αbβ))=2α2a2(α2b2+β22αbβ)tanh1(t(bαβ)+aαα2a2(α2b2+β22αbβ))

But t=tan(u2) thereforeduβα(asin(u)+b)=2α2a2(α2b2+β22αbβ)tanh1(tan(u2)(bαβ)+aαα2a2(α2b2+β22αbβ)) But u=αy+βx, and the above becomesduβα(asin(u)+b)=2tanh1(tan(αy+βx2)(bαβ)+aαα2a2(α2b2+β22αbβ))α2a2(α2b2+β22αbβ) Back to (1), therefore after integrating both sides2tanh1(tan(αy+βx2)(bαβ)+aαα2a2(α2b2+β22αbβ))α2a2(α2b2+β22αbβ)=x+C

Let A=α2a2(α2b2+β22αbβ) Then

tanh1(tan(αy+βx2)(bαβ)+aαA)=12A(x+C)tan(αy+βx2)(bαβ)+aαA=tanh(12A(x+C))tan(αy+βx2)(bαβ)+aα=Atanh(12A(x+C))tan(αy+βx2)=A(bαβ)tanh(12A(x+C))aα(bαβ)αy+βx2=arctan(A(bαβ)tanh(12A(x+C))aα(bαβ))y=2αarctan(A(bαβ)tanh(12A(x+C))aα(bαβ))βxα

Verification

ode:=diff(y(x),x)=-a*sin(alpha*y(x)+beta*x)-b; 
A0:=sqrt(alpha^2*a^2-(alpha^2*b^2+beta^2-2*alpha*b*beta)); 
B0:=(alpha*b-beta); 
my_sol:=2/alpha*arctan(A0/B0*tanh((1/2)*A0*(x+_C1))-a*alpha/(B0))-beta*x/alpha; 
odetest(y(x)=my_sol,ode); 
0