2.25   ODE No. 25

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

ay(x)2bx2νcxν1+y(x)=0 Mathematica : cpu = 3.9508 (sec), leaf count = 516

{{y(x)xν(bc1(ν+1)(ν+1)2U(12(acb(ν+1)2+νν+1),νν+1,2abxν+1(ν+1)2)+c1(ac(ν+1)+b(ν+1)2ν)U(12(acb(ν+1)2+3ν+2ν+1),νν+1+1,2abxν+1(ν+1)2)+b(ν+1)(ν+1)2(Lac2b(ν+1)2ν2(ν+1)1ν+1(2abxν+1(ν+1)2)+2Lac2b(ν+1)23ν+22ν+2νν+1(2abxν+1(ν+1)2)))a(ν+1)2(c1U(12(acb(ν+1)2+νν+1),νν+1,2abxν+1(ν+1)2)+Lac2b(ν+1)2ν2(ν+1)1ν+1(2abxν+1(ν+1)2))}}

Maple : cpu = 0.473 (sec), leaf count = 348

{y(x)=12ax(((ν2)b32+abc)M12ν+2((2ν2)b+ac)1b,(2ν+2)1(2abxν+1ν+1)+2b3/2_C1(ν+1)W(2ν2)b+acb(2ν+2),(2ν+2)1(2abxν+1ν+1)+(Wc2ν+2a1b,(2ν+2)1(2abxν+1ν+1)_C1+Mc2ν+2a1b,(2ν+2)1(2abxν+1ν+1))(b32ν2(xν+1b+c/2)ab))b32(Wc2ν+2a1b,(2ν+2)1(2abxν+1ν+1)_C1+Mc2ν+2a1b,(2ν+2)1(2abxν+1ν+1))1}

Hand solution

y+ay2bx2vcxv1=0(1)y=bxv+cxv1ay2=P(x)+Q(x)y+R(x)y2

This is Riccati first order non-linear ODE with P(x)=bxv+cxv1,Q(x)=0,R(x)=a.

Need to do this later.