[next] [prev] [prev-tail] [tail] [up]
ay(x)2−bx2ν−cxν−1+y′(x)=0 ✓ Mathematica : cpu = 3.9508 (sec), leaf count = 516
{{y(x)→−xν(bc1(ν+1)(ν+1)2U(12(acb(ν+1)2+νν+1),νν+1,2abxν+1(ν+1)2)+c1(ac(ν+1)+b(ν+1)2ν)U(12(acb(ν+1)2+3ν+2ν+1),νν+1+1,2abxν+1(ν+1)2)+b(ν+1)(ν+1)2(L−ac2b(ν+1)2−ν2(ν+1)−1ν+1(2abxν+1(ν+1)2)+2L−ac2b(ν+1)2−3ν+22ν+2νν+1(2abxν+1(ν+1)2)))a(ν+1)2(c1U(12(acb(ν+1)2+νν+1),νν+1,2abxν+1(ν+1)2)+L−ac2b(ν+1)2−ν2(ν+1)−1ν+1(2abxν+1(ν+1)2))}}
✓ Maple : cpu = 0.473 (sec), leaf count = 348
{y(x)=−12ax(((−ν−2)b32+abc)M−12ν+2((−2ν−2)b+ac)1b,(2ν+2)−1(2abxν+1ν+1)+2b3/2_C1(ν+1)W−(−2ν−2)b+acb(2ν+2),(2ν+2)−1(2abxν+1ν+1)+(W−c2ν+2a1b,(2ν+2)−1(2abxν+1ν+1)_C1+M−c2ν+2a1b,(2ν+2)−1(2abxν+1ν+1))(b32ν−2(xν+1b+c/2)ab))b−32(W−c2ν+2a1b,(2ν+2)−1(2abxν+1ν+1)_C1+M−c2ν+2a1b,(2ν+2)−1(2abxν+1ν+1))−1}
y′+ay2−bx2v−cxv−1=0(1)y′=bxv+cxv−1−ay2=P(x)+Q(x)y+R(x)y2
This is Riccati first order non-linear ODE with P(x)=bxv+cxv−1,Q(x)=0,R(x)=−a.
Need to do this later.
[next] [prev] [prev-tail] [front] [up]