2.26   ODE No. 26

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

y(x)(Ay(x)a)(By(x)b)=0 Mathematica : cpu = 0.293557 (sec), leaf count = 56

{{y(x)aeAb(c1+x)beaB(c1+x)AeAb(c1+x)BeaB(c1+x)}}

Maple : cpu = 0.1 (sec), leaf count = 45

{y(x)=e(x+_C1)(AbaB)abAe(x+_C1)(AbaB)B}

Hand solution

y(Aya)(Byb)=0y=(Aya)(Byb)(1)=aby(Ab+Ba)+ABy2

This is Riccati first order non-linear ODE with P(x)=ab,Q(x)=(Ab+Ba),R(x)=AB. Let y=uuR(x)=uABu, hence

y=uABu(u)2ABu2

Comparing to (1) results in

uABu(u)2ABu2=aby(Ab+Ba)+ABy2=ab(uABu)(Ab+Ba)+AB(uABu)2=ab+uABu(Ab+Ba)+AB(u)2(ABu)2=ab+uABu(Ab+Ba)+(u)2ABu2

Hence

uABu=ab+uABu(Ab+Ba)u=ABabu+u(Ab+Ba)u+u(Ab+Ba)+u(ABab)=0

This is second order ODE with constant coefficient. Solution is

u=c1eaBx+c2eAbx

Therefore

u=aBc1eaBxc2AbeAbx

And therefore the solution is

y=uABu=1ABaBc1eaBxc2AbeAbxc1eaBx+c2eAbx=aBc1eaBx+c2AbeAbxAB(c1eaBx+c2eAbx)

Dividing by c2 and letting c=c1c2

y=aBceaBx+AbeAbxAB(ceaBx+eAbx)

Verification

eq:=diff(y(x),x)-(A*y(x)-a)*(B*y(x)-b) = 0; 
sol:=(a*B*_C1*exp(-a*B*x)+A*b*exp(-A*b*x))/(A*B*(_C1*exp(-a*B*x)+exp(-A*b*x))); 
odetest(y(x)=sol,eq); 
0